力扣—寻找两个正序数组的中位数(Median of Two Sorted Arrays Java)

题目大意

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
找出并返回这两个正序数组的 中位数 ;并要求时间复杂度为 O(log (m+n))

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:2.00000

解题思路

  • 给出两个有序数组,要求找出这两个数组合并以后的有序数组中的中位数。要求时间复杂度为 O(log (m+n))。
  • 首先办法是把两个数组合并,然后取出中位数。但是合并有序数组的时间复杂度是 O(max(n,m)) 的,不符合题意。看到题目给的O(log (m+n))的时间复杂度,联想到二分搜索
  • 由于要找到最终合并以后数组的中位数,两个数组的总大小也知道,所以中间这个位置也是知道
    的。只需要二分搜索一个数组中切分的位置,另一个数组中切分的位置也能得到。为了使得时间复杂度最小,所以二分搜索两个数组中⻓度较小的那个数组。
  • 切分数组 1 和数组 2 :其实就是如何切分数组 1 。先随便二分产生一个 midA ,切分的线何时算满足了中位数的条件呢?即,线左边的数都小于右边的数。
    即, nums1[midA-1] ≤ nums2[midB] &&nums2[midB-1] ≤ nums1[midA] 。如果这些条件都不满 足,切分线就需要调整。如果 nums1[midA] <nums2[midB-1] ,说明 midA 这条线划分出来左 边的数小了,切分线应该右移;如果 nums1[midA-1] >nums2[midB] ,说明 midA 这条线划分 出来左边的数大了,切分线应该左移。经过多次调整以后,切分线总能找到满足条件的解。
  • 假设现在找到了切分的两条线了, 数组 1 在切分线两边的下标分别是 midA - 1 和 midA 。数 组 2在切分线两边的下标分别是 midB - 1 和 midB 。最终合并成最终数组,如果数组⻓度是奇数,那么中位数就是max(nums1[midA-1], nums2[midB-1]) 。如果数组⻓度是偶数,中间位置的两个数依次是:max(nums1[midA-1], nums2[midB-1]) 和 min(nums1[midA], nums2[midB]),那中位数就是 (max(nums1[midA-1], nums2[midB-1]) + min(nums1[midA],nums2[midB])) / 2

代码

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int m = nums1.length;
        int n = nums2.length;

        if((m + n) % 2 != 0){
            return (double) findKth(nums1,nums2,(m+n)/2,0,m-1,0,n-1);
        }else{
            return (findKth(nums1,nums2,(m+n)/2,0,m-1,0,n-1)+findKth(nums1,nums2,(m+n)/2-1,0,m-1,0,n-1)) * 0.5;
        }
    }
    public static int findKth(int []nums1,int[] nums2,int k,int aStart,int aEnd,int bStart,int bEnd){
        int aLen = aEnd - aStart + 1;
        int bLen = bEnd - bStart + 1;

        if(aLen == 0){
            return nums2[bStart+k];
        }
        if(bLen == 0){
            return nums1[aStart+k];
        }
        if(k == 0){
            return nums1[aStart] < nums2[bStart] ? nums1[aStart]:nums2[bStart];
        }
        int aMid = aLen * k /(aLen + bLen);
        int bMid = k - aMid - 1;

        aMid = aMid + aStart;
        bMid = bMid + bStart;

        if(nums1[aMid] > nums2[bMid]){
            k = k - (bMid - bStart +1);
            aEnd = aMid;
            bStart = bMid + 1;
        }else{
            k = k -(aMid -aStart+1);
            bEnd = bMid;
            aStart = aMid + 1;
        }
        return findKth(nums1,nums2,k,aStart,aEnd,bStart,bEnd);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值