计算二叉树的最小高度

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if(root == null){
            return 0;
        }
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        int depth = 1;
        while(!q.isEmpty()){
            int sz = q.size();
            //将当前队列的所有节点像自由扩散
            for(int i = 0;i < sz; i++){
                TreeNode node = q.poll();
                //判断是否到达终点
                if(node.left == null && node.right == null){
                    return depth;
                }
                if(node.left != null){
                    q.offer(node.left);
                }
                if(node.right != null){
                    q.offer(node.right);
                }     
            }
            //增加步数
            depth++;
        }
        return depth;
    }
}


首先,我们需要明确一点,二叉树高度并不是通过先序遍历来直接计算的,而是需要额外记录每个节点的深度信息,然后逐层递增。但是,我们可以结合先序遍历过程,同时递归地计算当前节点的最大子树高度(左子树和右子树的高度),最后取最大值加一作为该节点的高度。下面是完整的C++代码示例: ```cpp #include <iostream> using namespace std; // 定义二叉树节点结构体 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; // 计算树的高度,采用辅助函数递归实现 int heightHelper(TreeNode* root, int& maxDepth) { if (root == nullptr) { return 0; // 空节点的高度为0 } // 先访问根节点 cout << root->val << " "; // 这里只是打印,对于实际高度计算可以忽略 // 递归计算左右子树的最大深度,并更新最大深度 int leftHeight = heightHelper(root->left, maxDepth); int rightHeight = heightHelper(root->right, maxDepth); // 返回当前节点的最大深度(即根节点的高度) maxDepth = max(maxDepth, leftHeight + rightHeight + 1); return max(leftHeight, rightHeight) + 1; // 返回当前节点的高度 } // 主函数用于获取树的高度 int getHeight(TreeNode* root) { int maxDepth = 0; heightHelper(root, maxDepth); return maxDepth; } int main() { // 创建并初始化一个示例二叉树 // ... (这里省略具体的二叉树构建代码) // 获取二叉树高度 int treeHeight = getHeight(root); cout << "The height of the binary tree is: " << treeHeight << endl; return 0; } ``` 在这个例子中,`heightHelper` 函数负责递归计算并返回给定节点的最小深度,而 `getHeight` 函数则是外部接口,接收树的根节点并返回整个树的高度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值