储备池计算小结

本文总结了储备池计算的发展,从RNN的挑战到ESN(Echo State Network)和LSM(Liquid State Machine)的提出。共同点在于它们都包含循环连接的储蓄池,不同之处在于ESN使用sigmoid单元,而LSM采用脉冲神经元。储蓄池的性能受四个关键参数影响:连接权谱半径SR、规模N、输入单元尺度IS和稀疏程度SD。
摘要由CSDN通过智能技术生成

ESNLSM提出的背景

RNN(Recurrent Neural Network),被证明具有很好的函数逼近能力和记忆能力,但训练起来却十分困难。

Buonomano 在早期工作中提出了用具有暂塑性(short-term plasticity、dynamic synapses)的脉冲神经元(spiking neurons)构成的随机网络,他发现暂塑性使得循环网络具有更慢的动态:保持随机连接的循环网络不变,只需要训练一个简单的对网络输出特征做处理的分类/回归模型。

上述训练思想分别被Jaeger 用在回声状态网络(Echo State Network)上,被 Maass 用在液体状态机(Liquid State Machine)上,构成了现在储备池计算的基石。

ESNLSM的共同点和区别

共同点:

两者的隐藏层都被称为储蓄池,而储蓄池内部的神经元都是循环

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
储备计算(Reservoir Computing)起源于神经网络领域,最早由Jaeger和Haas在2004年提出。它是一种基于反馈的神经网络模型,相比传统的前馈神经网络,具有更简单的结构和训练方式。 储备计算的发展主要集中在改进和扩展其应用领域。最初,储备计算主要应用于时间序列预测任务,如语音识别和股票预测。随着研究的深入,人们逐渐发现储备计算在其他领域也具有潜力。 在储备计算的发展过程中,研究者们提出了一些改进和变种模型。其中,Echo State Network (ESN) 是最常用的一种。ESN通过引入一个稳定的储备(reservoir),将输入和反馈信号线性组合得到输出。由于储备的动态性质,ESN能够有效地处理时序信息。 除了ESN,还有一些其他的储备计算模型,如Liquid State Machine(LSM)和Fast-Fading Memory(FFM)。LSM通过构建一个大规模的动力系统来处理信息,而FFM则利用快速衰减的记忆单元来存储信息。 储备计算的应用领域也在不断扩展,包括图像处理、自然语言处理、机器人控制等。研究者们通过改进模型结构、优化训练算法以及引入新的技术手段,不断提高储备计算的性能和应用范围。 总的来说,储备计算作为一种新颖而有效的神经网络模型,其起源和发展经历了多年的研究和探索,目前已经成为人工智能领域中备受关注的研究方向之一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值