
目标检测YOLO系列实战应用案例精讲100例
文章平均质量分 95
目标检测YOLO系列案例,文章包含算法原理及其优化提升,适用于【检测】【分类】【分割】【关键点】任务!
优惠券已抵扣
余额抵扣
还需支付
¥39.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
林聪木
巧笑倩兮,美目盼兮,素以为绚兮
展开
-
目标检测YOLO实战应用案例100讲-点云滤波(概念基础篇)
点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,在获取点云数据时 ,由于设备精度,操作者经验环境因素带来的影响,以及电磁波的衍射性,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理。其类似于信号处理中的滤波,原创 2024-12-16 00:30:00 · 305 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的遥感图像目标检测(续)
在深度神经网络中,不同的卷积层会对输入的特征图进行不同程度的降采样或上 采样,从而导致不同的尺度特征被保留或丢失,并且在一些图像中难以准确地检测目 标,降低目标检测算法的准确率。特征金字塔就是为了解决目标检测中目标尺度变化 问题而提出的方法,有效地处理了多尺度变化问题。通过在不同层次的特征图上检测 目标,可以有效地处理尺度变化的情况,解决不同卷积导致的不同目标尺度变化问题, 可以提高目标检测算法的准确率。 在主干网络特征提取时,图像会通过卷积和池化操作进行下采样,从而使得图像 尺寸变小。这样做的目的是减少原创 2024-12-18 00:30:00 · 89 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的遥感图像目标检测
深度学习是机器学习的一个分支,其利用构建多层神经网络的方法实现自动化特 征学习和模式识别。与传统机器学习算法相比,深度学习可利用大量的数据和计算资 源,训练出更具有泛化能力的模型。因此,在图像识别、自然语言处理、语音识别、 推荐系统等领域都取得了重大突破。神经网络模型是深度学习的核心,由多个神经元 和多层连接组成。每层神经元通过调整权重和偏置项,将输入转换为输出并传递给下 一层。深度学习采用反向传播算法,通过最小化损失函数来调整神经网络的权重和偏 置,进而提高模型的准确性。原创 2024-12-13 00:30:00 · 357 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的 无人机图像轻量化目标检测(续)
Transformer结构虽能进行全局特征映射,但其模型需要大量数据集训练,同时所需 的计算量庞大,而卷积网络计算量相对较少,因此结合卷积与Transformer的优势将局部特征输入到注意力机制中,增加对全局特征处理能力同时也有助于模型收敛。原创 2024-12-15 00:30:00 · 122 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的 无人机图像轻量化目标检测
深度学习为机器学习[41,42]的一种分支,它主要是通过多重神经网络来解决复杂的实 际问题。其主要运用在自然语言处理、图像识别、语音合成、强化学习等多方面领域。深度学习发展于20世纪80年代,当时科学家想通过模拟人脑的神经网络代替传统的机 器学习方法,随后在90年代随着大量数据集的出现,深度学习得到进一步发展。到了 21世纪,随着计算机性能的提升基于深度学习的计算机视觉任务得到飞速发展[43,44],将人工智能带入新的维度。原创 2024-12-10 00:30:00 · 424 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的海上船舶识别(续)
在曲线图4.9中,横坐标为训练的迭代次数(epoch),纵坐标为损失值(1oss)。(a) 和(b)是训练集损失,(c)和(d)是验证集损失。由图可知,1oss曲线呈收敛趋势。通过对各 参数进行预试验,P、R、F1随着迭代次数增加而逐渐增加,经过100多次epoch后各项指 标趋于稳定。当学习率在10- 5时,模型的F1值仍有提升,但学习率过小会导致训练时间 过长且收敛速度慢,故选取10- 5作为模型的学习率。模型训练的配置文件存放在training 目录中,模型训练所需的数据文件保存在data目录中。原创 2024-11-20 00:30:00 · 982 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的海上船舶识别
随着经济的发展,我国主要贸易渐渐从陆地转移到海上,船舶作为海上贸易的交通工 具,不仅影响着国家的经济发展也牵系着国家的安全。基于此,无数学者纷纷开始着手于 船舶研究,主要原因分为以下几个方面:首先是资源利用方面。随着陆地资源不断地被人们开发利用,一些资源面临枯竭,人 类开始把手伸向不见底的海洋。海洋是一个巨大的资源宝库,蕴藏着各种各样无法估量的 自然资源。无论是从国家战略方面还是经济建设的角度来看,海洋已经成为各个国家的争 夺重地而且呈愈演愈烈的趋势。原创 2024-11-15 00:30:00 · 225 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的人眼视线检测(续)
如4.2.2节所述,双阶段视线检测网络由人眼区域检测网络和眼部关键点检测网络级 联而成。对于人眼区域检测网络,输入为一张人脸图片,输出为检测框类别、中心x坐标、 中心y坐标、宽、高、置信度的一维张量。对于眼部关键点检测网络,输入为一张人眼图片,输出为具有顺序关系的眼部关键点坐标。人眼区域检测网络的输出应为眼部关键点检 测网络的输入,但两个网络在级联部分的数据类型并不相同。原创 2024-11-11 00:30:00 · 186 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的人眼视线检测
视觉是人和动物最重要的感觉。人可以通过视觉获得外界信息,外界也可以通过视线 获知人的想法,视线检测技术由此而兴。根据视线的检出结果,可以知晓目标人物当前的 关注点,在某些场景下甚至可以预测其行动。一般来说,视线指由起点到终点的一个方向 向量。目标人物瞳孔的中心位置为视线起点,其正在关注区域的位置为视线终点[1]。捕捉 到此信息意味着建立了视线起点至视线终点的映射关系,这一关系可以应用于许多场景:(1)疲劳驾驶。原创 2024-11-05 09:30:01 · 449 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】YOLOV11
YOLO11 是 Ultralytics YOLO 系列的最新版本,结合了尖端的准确性、速度和效率,用于目标检测、分割、分类、定向边界框和姿态估计。与 YOLOv8 相比,它具有更少的参数和更好的结果,不难预见,YOLO11 在边缘设备上更高效、更快,将频繁出现在计算机视觉领域的最先进技术(SOTA)中。主要特点YOLO11 使用改进的主干和颈部架构来增强特征提取,以实现更精确的目标检测和复杂任务的性能。精细的架构设计和优化的训练流程在保持准确性和性能之间最佳平衡的同时,提供更快的处理速度。原创 2024-10-08 10:23:18 · 1304 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于双目视觉的目标检测与测距系统(中)
双目立体匹配算法分为全局、半全局和局部立体匹配算法[41]。Scharstein等将双目立体匹配的过程总结为匹配代价计算、代价聚合、视差计算、视差细化四个阶段[42]。匹配代价代表的是左右图像中像素点之间的相关性,匹配代价的计算需要预先设定的视差范围,通过在设定的范围内计算获得每个像素相应的代价值,得到的匹配代价越小表示两个像素是同名点的可能性越大。匹配代价计算是所有立体匹配算法的基础,对匹配代价的计算将影响匹配的最终结果。经典的匹配代价求取方法有。原创 2024-09-13 00:30:00 · 471 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于双目视觉的目标检测与测距系统(下)
都将影响测量的准确率。测与测距效果,模拟室内服务机器人移动时的工作状态,移动双目摄像头同时检测场景中的目标并测量距离,图5.8为在动态摄像头下对场景目标检测与测距的结果。- 根据目标的深度信息,不仅可以计算出目标距离,还可以通过三角测量原理重建目标在三维空间中的坐标位置,进而实现对多个目标的计数和位置追踪。为了验证本文所设计的双目测距与目标检测系统的有效性和可靠性,进行静态测距、静态目标检测与测距以及动态目标检测与测距实验,分析实验检测的效果和。该算法可以自动地对场景中的物体进行跟踪,并计数它们的数量。原创 2024-09-15 00:30:00 · 283 阅读 · 0 评论 -
机器视觉系列之【基础知识】-工业机器人(二)
模型预测控制是一种基于模型的控制策略,它通过预测未来一段时间内的系统状态和控制输入,来优化当前时刻的控制输出。MPC的核心在于建立一个精确的系统模型,并利用这个模型来预测未来的行为,从而实现对系统的最优控制。原创 2024-09-15 00:30:00 · 164 阅读 · 0 评论 -
MATLAB算法实战应用案例精讲-【图像处理】图像配准(补充篇)
图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。原创 2024-09-16 00:30:00 · 403 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-TDI线阵相机
对于测试数字成像设备非常重要的参数是分辨率。但有不同的方式来表达数码相机的分辨率,有时令人困惑。下面介绍的是是最常见的单位。“这台相机有1000万像素的分辨率”是我们经常在广告上看到的数据,但是从技术上看,这是错误的。一个1000万像素的相机有一千万像素,可以采集镜头投射到传感器上的图像。但这并不意味着,每个像素真的拥有关于图像内容的有用信息。所以像素的数量与分辨率有些相关,但是没有定义它。一个好的1000万像素摄像机与12或14万像素摄像机相比,具有相同的分辨率并不罕见。原创 2024-08-27 00:30:00 · 324 阅读 · 0 评论 -
机器视觉系列之【硬件知识】-工业相机(四)
白平衡就是通过调整图像中R、G、B分量的比例关系,可以使在各种光线条件下拍摄出的图像色彩还原真实。由于图像传感器(CMOS/CCD)本身没有这种功能,因此就必要对它输出的信号进行一定的修正。原创 2024-07-24 00:30:00 · 473 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【图像处理】图像分类
计算机主要问题有图像、目标分类和图像分割等。针对图像分类任务,视觉提升准确率的方法路线有几个,一个是模型的修改,另一个是各种数据处理和训练的技巧(技巧)图像分类中的各种技巧对于目标检测、图像分割等任务也有很好的作用,因此值得总结。热身线性缩放学习率标签平滑随机图像裁剪和修补知识蒸馏抠图随机擦除余弦学习率衰减混音训练阿达布德自动增强其他经典技巧学习是神经网络训练中最重要的超参数之一,针对学习率的技巧有很多。原创 2024-07-22 00:30:00 · 250 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】机器视觉(六)
一旦检测到有缺陷的瓶装饮料,系统需要能够进行识别和登记缺陷瓶子的信息,以便在长长的产线中定位缺陷瓶子,通过无线传输的方式将数据传送给产线下游的专门站点,从而在最终打包环节前将有缺陷的瓶装饮料剔除出去。Laplace 算子是一种各向同性的二阶微分算子[5],而图像的边缘灰度是阶跃变化的,在数学上表示为其二阶导数过零点,故可利用 Laplace 算子对进行图像锐化,可以有效地定位边缘点,并通过加强边缘的灰度值,使图像的对 比度增强,同时使边缘细节得到提升。其次,图像,国内外差距目前已经很小,好发重要期刊;原创 2024-07-24 00:30:00 · 2287 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】ROS机器人(基础篇)(二)
想象一下,有两台计算机A和B,每台上都运行着一个独立的ROS系统。我们的目标是让系统A中的节点监听话题testa,并将接收到的消息通过TCP发送给系统B中的节点。同样,系统B中的节点将监听话题testb并通过TCP将消息回传给系统A。这种设置的一个典型应用场景是多机器人协作,其中机器人位于不同的网络环境中,或者需要与不支持ROS的遗留系统交互。首先,确保两台计算机都安装了ROS,并且需要使两台设备能互ping。原创 2024-02-22 00:30:00 · 229 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】YOLOV8(二)
YOLO(You Only Look Once)系列从YOLOv5发展到YOLOv10的演变代表了实时目标检测领域创新和改进的非凡历程。每个版本都在架构、性能和部署能力上引入了重大进步,使YOLO系列成为计算机视觉领域的一个重要基石,特别是在边缘部署场景中。YOLOv5、YOLOv8和YOLOv10的性能指标展现出准确性及效率不断提高的清晰趋势。YOLOv5以其CSPDarknet主干网络和PANet Neck 结构,为速度与准确性的平衡奠定了坚实基础。原创 2024-07-22 00:30:00 · 321 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】图像特征提取(最终篇)
特征提取和匹配是许多计算机视觉应用中的一个重要任务,广泛运用在运动结构、图像检索、目标检测等领域。每个计算机视觉初学者最先了解的特征检测器几乎都是1988年发布的HARRIS。在之后的几十年时间内各种各样的特征检测器/描述符如雨后春笋般出现,特征检测的精度与速度都得到了提高。特征提取和匹配由关键点检测,关键点特征描述和关键点匹配三个步骤组成。原创 2024-07-23 00:30:00 · 358 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】三维重建(基础篇)
是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机环境下对其进行处理、操作和分析其性质的基础,也是在计算机中建立表达客观世界的虚拟现实的关键技术。多视图的三维重建,其方法是先对摄像机进行标定, 即计算出摄像机的图像坐标系与世界坐标系的关系.然后利用多个二维图像中的信息重建出三维信息。原创 2024-07-21 00:30:00 · 597 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】结构光
焊接技术是工业制造过程中最重要的部分之一。由于传统焊接生产存在工作环境差、重复性高、人工劳动强度高、效率低等缺点,近年来焊接机器人越来越多地取代焊工。传统的焊接机器人一般采用示教回放方式工作。然而,由于工件夹紧误差和焊接热变形,焊枪在焊接过程中很容易偏离理论焊缝轨迹。因此,传统的焊接模式难以满足高效率、高精度和高质量的焊接要求。随着计算机视觉的发展,基于结构光视觉传感器的自动焊缝跟踪方法越来越多地被用于焊缝跟踪和熔池测量。该方法适应性强,能够在不影响焊接过程的情况下获取丰富的焊缝信息。原创 2024-07-25 00:30:00 · 8434 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的无人机影像小目标识别(续)
在深度学习的整个训练与计算中,存在着大量的矩阵操作。常规CPU的优势是串行运 算,故GPU是大规模矩阵操作的首选。目前主流的算法都是利用GPU的强大并行运算能力, 对深度学习模型进行训练。表3-2显示了本实验的软件和硬件配置,CUDA是由NVIDIA开发的集成计算平台,它 可以加快对深度学习中的卷积等方面的矩阵操作。在Pytorch神经网络框架下进行训练和预 测时,CUDANN能够利用CUDA+ CUDANN来调用GPU加快模型的训练和预测,提升用户 体验。原创 2024-07-08 00:30:00 · 311 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的无人机影像小目标识别
无人机是一种利用遥控或地面控制系统进行自动或半自动飞行的无人飞行器[ 1]。随着 市场需求的日益扩大,无人机已经成为了人们关注的焦点,它将取代人类从事危险、枯燥 和繁重的工作[ 2]。在军事、农业、交通、商业、水利、能源以及医疗等方面,都有着广泛 的应用。在农业生产中,经常用于喷洒农药,监测农情,播种等;在商务活动中,经常用 于快递运输,影视拍摄,广告宣传等;在交通行业中,经常被用于公安、交警、高速公路 应急管理等方面[ 3];在水利工程中,经常应用于防洪指挥调度、大坝工程测绘 [4];原创 2024-07-03 00:30:00 · 387 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】YOLOV10
为了解决这个问题,我们提出了一种基于秩的块设计方案,旨在通过紧凑的架构设计降低被证明是冗余的阶段复杂度。我们首先提出了一个紧凑的倒置块(CIB)结构,它采用廉价的深度可分离卷积进行空间混合,以及成本效益高的点对点卷积进行通道混合C2fUIB只是用CIB结构替换了YOLOv8中 C2f的Bottleneck结构expansion."""expansion."""具体来说,我们在1×1卷积后将特征均匀地分为两部分。我们只将一部分输入到由多头自注意力模块(MHSA)和前馈网络(FFN)组成的NPSA块中。原创 2024-06-20 00:30:00 · 351 阅读 · 0 评论 -
MATLAB算法实战应用案例精讲-【图像处理】SLAM技术详解(基础篇)(四)
如果在扇区区域中存在关键点,则搜索扇区区域中最近的关键点(紫色和橙色,扇区中CK的最近关键点)并将其用于表示描述符的对应维度。最后,激光雷达 SLAM 创建的高度详细的 3D 环境地图可用于优化机器人的清洁行为,确保其覆盖房间的所有区域并避免遗漏任何点。低延迟激光雷达传感器可以提供近乎实时的环境数据,这对于需要快速决策的应用至关重要,例如快速移动的自动驾驶车辆中的障碍物检测和避让。与机械扫描激光雷达传感器相比,固态激光雷达传感器具有多种优势,包括更高的耐用性、更低的功耗以及更小的尺寸和重量。原创 2024-06-18 00:30:00 · 191 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】YOLOV9
什么是 YOLOv9?随着计算机视觉技术不断发展,YOLOv9 出现作为最新的进展,由 Chien-Yao Wang、I-Hau Yeh 和 Hong-Yuan Mark Liao 开发。这三位研究人员在该领域有着丰富的历史,曾为前几个模型的开发做出贡献,如 YOLOv4、YOLOR 和 YOLOv7。YOLOv9 不仅延续了前辈们的传统,还引入了重大创新,树立了目标检测能力的新标准。YOLOv9 是一种先进的目标检测模型,代表了计算机视觉技术的重大进步。原创 2024-06-23 00:30:00 · 231 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【自动驾驶】激光雷达
激光雷达作为现代精确测距和感知技术的关键组成部分,在近几年里取得了令人瞩目的发展。目前国内车规级激光雷达标准逐步趋于完善,伴随半固态式、固态式等技术不断革新,未来作为自动驾驶核心配置的发展潜力巨大。除此之外激光雷达也在机器人技术、智能制造等领域广泛应用,促使激光雷达市场不断增长。激光雷达技术路线多样,当前仍处于多技术路线并行阶段。技术路线有四个主要的维度:测距原理、光源、探测器、光束操纵。激光雷达主要包括激光发射、扫描系统、激光接收和信息处理四大系统,四个系统相辅相成。原创 2024-05-27 00:30:00 · 693 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】机器视觉(五)
线扫相机一次只取图像的一行,随着被检测物体运动,一行接一行地采集,因此用线扫相机采集的一个2D图像的每一行都是在不同时间点采集的。与面阵相机最大的不同就是光源的搭建,为了获取相同的行(物体运动很快),你必须要照亮一条线,但由于速度很快(一般在us级别),因此线扫相机经常需要很高亮度的光照(高达1000000lux)。但是作为线扫相机,提供很高的分辨率(最高16K/线),相机需要拥有高质量镜头与合适的MTF。线扫相机需要物体或者相机运动,最后的图像大小一方面取决于相机的分辨率,另一方面取决于主机拼接的线数。原创 2024-05-24 00:30:00 · 229 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-飞行时间(TOF)相机详解
ToF: Time of flight. 飞行时间。当然这只是一种翻译的方法,其实ToF是一种测距的方法,通过测量超声波/微波/光等信号在发射器和反射器之间的“飞行时间”来计算出两者之间距离。能够实现ToF测距的传感器就是ToF传感器。ToF传感器种类很多,使用较多的是通过红外或者激光进行测距的ToF传感器。使用ToF传感器生成和捕获的数据非常有用,因为它可以提供深度信息,结合相机,就可以得到3D图像,这样就可以进行行人检测,基于面部特征的用户身份验证,使用SLAM(同时定位和映射)算法的环境映射等等。原创 2024-05-23 00:30:00 · 292 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-【目标检测】YOLOV8
您必须使用此文件为您的模型提供数据,它就像您收集并存储在这些相应文件夹(train、val、test)中的数据与您的 YOLO 模型之间的桥梁。我做的一件非常有用的事情,是创建一个函数,它可以直接将收集的图像定向到正确的文件夹,您很快就会看到为什么这很有用。好吧,这就是这类项目的主要阶段,希望已经阐述清楚并让您的生活变得更轻松,如果您想使用 ultralytics 的这个令人难以置信的工具 Yolo 复制或进行类似的项目。在这里,您需要一个基本的功能,即通过您自己的网络摄像头收集数据。原创 2024-05-22 00:30:00 · 316 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的无人机航拍图像目标检测算法研究与应用(下)
个数达到了144865个,为数量最多的类别,而雨棚三轮车、三轮车和公共汽车则为标注数量较少的类别,分别为3243个、4803个和5926个。的特征信息,三类目标在所有类别中属于尺寸较小的目标,获得的检测精度与整体的平均精度相当,行人和摩托车的m AP高于整体的26.1,分别为30.5和31.7。量较多,但由于目标较小,且多以密集的方式呈现,因此检测精度也低于平均水平,由于形似物和其他噪声的干扰,精确率只有68.2。与YOLOv3相同的是,算法最后也使用了三个检测分支来完成目标的分类 和位置回归。原创 2024-05-14 00:30:00 · 333 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的无人机航拍图像目标检测算法研究与应用(中)
卷积神经网络通常由输入层、卷积层、池化层、全连接层和输出层组成,如图2.1所示。卷积层由多个卷积核和偏置参数组成,不同的卷积核用于提取不同的局部特征,而整张图片可以共享一个卷积核的所有权重。这些特点有利于模型收敛,减少了模型的冗余且更容易训练。池化层的作用是去除图片中的冗余信息,保持特征不变的同时进行特征降维。其中,平均池化和最大池化是较为常见的池化操作。全连接层的作用是把经过卷积和池化操作后的特征连接起来,为分类器的预测做准备。原创 2024-05-13 00:30:00 · 907 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(下)
在右边的网络中,首先对C5层的特征图进行1×1卷积得到P5层的特征图,作用是对通道数进行降维操作。这样虽然能够获得很好的检测性能,但是会产生更多的网络参数,从而加大网络的计算复杂度,因此对硬件设备计算资源的要求就更高了。它主要的作用是可以增大特征层的感受野,而且不会增加模型的参数量,以及可以保证特征图的分辨率不下降。可以看到输入图像首先经过一个常规卷积层,得到了一个通道数为m的特征图,而真正需要的特征图通道数为n,那么下一步需要做的。通常卷积神经网络的实现流程是,先采集大量特征和标签数据,制作数据集。原创 2024-05-13 00:30:00 · 253 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-基于深度学习的交通场景多尺度目标检测算法研究与应用(中)
所提算法CCDR-Net共采用六个不同特征层检测不同尺寸的目标,分别为ResNet-101的Conv3_x和Conv5_x以及后接四层新级联特征层Conv6、Conv7、Conv8和Conv9,Net算法在七类交通目标上进行主观视觉对比,如图4.7所示,共展示了12组图片,每组图片从左至右依次为原图、SSD、CCDR-Net、ACCDR-Net的检测结果对比。其有效性,本节针对基础骨干网络共设置了十个模型,具体情况如下: 模型1 (ResNet-101-SSD):替换基础骨干网络为原ResNet-101。原创 2024-05-12 00:30:00 · 167 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-无监督领域自适应目标检测方法研究与应用(二)
4.2.1实例级或图像级对齐?现有的领域自适应目标检测方法的基本做法通常是分别在图像级和实例级对齐两个域,这在理论上是正确的。然而,现实情况是,每张图像往往包含多个目标,而且每个目标的位置根本不是固定的。也就是说,两个域的图像不仅存在域差异,连包含的目标类别和位置也不一样,这使得图像级的对齐还对齐了一些域偏移之外的地方。因此,在图像级别对齐两个域可能会因为一些无效对齐而导致无法按预期工作。在无源领域自适应这种无法访问源域数据的情况下,图像层面的迁移更加困难。原创 2024-05-09 00:30:00 · 327 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-无监督领域自适应目标检测方法研究与应用(三)
在无监督领域自适应目标检测问题中[31],只有源域数据有标注,目标域数据没有标注,如何才能训练一个好的目标检测模型能让该模型在目标域数据中能得到很好的检测性能是无监督领域自适应目标检测要研究的问题。而在基于深度学习之前,无监督领域自适应目标检测相关方法主要分为两个类别。第一个类别是利用特征表达式将源域和目标域数据映射到共享的隐藏空间,然后利用源域样本的标签信息,训练得到基于该隐藏空间的分类器。第二类方法是基于迁移检测器来作为切入点。原创 2024-05-10 00:30:00 · 249 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-无监督领域自适应目标检测方法研究与应用(四)
Pascal VOC数据集[26]、Clipart1K数据集[27]、Watercolor2K数据集[27]、Cityscapes。SCAD[37]、DDMRL[125]、SW Detection[35]、ICR-CCR[38]和HTCN[54]。集[26]到Clipart1K数据集[27],从Pascal VOC数据集[26]到Watercolor2K数据集[27]Foggy Cityscapes数据集[25]数据集[24]、Foggy Cityscapes数据集[25]和SIM10K数据集[83]。原创 2024-05-11 00:30:00 · 235 阅读 · 0 评论 -
目标检测YOLO实战应用案例100讲-无监督领域自适应目标检测方法研究与应用(五)
的方法包括DA Faster[30],FAFRCNN[94],ICR-DA[38],MAF[139],ICR-CCR-DA[38],37],SW Detection[35],DDMRL[125],SFOD(SED)[82],SFOD(Ideal)[82]等。38]、SW Detection[35]、MEAA[138]、GAP[142]、SCL[140]和ATF[141]。35]、DA Faster[30]、SCDA[37]、MAF[139]、MLDA[116]、ICR-CCR[38]等。原创 2024-05-12 00:30:00 · 272 阅读 · 0 评论