【排序算法】归并排序(C++实现)

转自

jimye原创博客,出处链接:

https://blog.csdn.net/left_la/article/details/8656953

个人加了些注释

归并排序是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。常见的归并排序有两路归并排序(Merge Sort),多相归并排序(Polyphase Merge Sort),Strand排序(Strand Sort)。下面介绍第一种:

(一)两路归并排序

最差时间复杂度:O(nlogn)
平均时间复杂度:O(nlogn)
最差空间复杂度:O(n)
稳定性:稳定

两路归并排序(Merge Sort),也就是我们常说的归并排序,也叫合并排序。它是建立在归并操作上的一种有效的排序算法,归并操作即将两个已经排序的序列合并成一个序列的操作。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的基本步骤如下:
1.申请两个与已经排序序列相同大小的空间,并将两个序列拷贝其中;
2.设定最初位置分别为两个已经拷贝排序序列的起始位置,比较两个序列元素的大小,依次选择相对小的元素放到原始序列;
3.重复2直到某一拷贝序列全部放入原始序列,将另一个序列剩下的所有元素直接复制到原始序列尾。

设归并排序的当前区间是R[low..high],分治法的三个步骤是:
1.分解:将当前区间一分为二,即求分裂点
2.求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
3.组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。

算法示意图:


代码实现:


#include<iostream>
using namespace std;

void Merge(int *a,int p, int q, int r)
{
    int n1 = q - p + 1;       //左部分的的元素个数
    int n2 = r - q;           //同上
    int i, j, k;
    int *L = new int[n1+1];
    int *R = new int[n2+1];
    for(i=0;i<n1;i++)
        L[i]=a[p+i];
    for(j=0;j<n2;j++)
        R[j]=a[q+j+1];
    L[n1]=11111111;
    R[n2]=11111111;
     // 数组L从0~n1-1存放,第n1个存放int型所能表示的最大数,即认为正无穷,这是为了
     //处理合并时,比如当数组L中的n1个元素已经全部按顺序存进数组a中,只剩下数组R的
     //部分元素,这时因为R中剩下的元素全部小于11111111,则执行else语句,直接将剩下的
     //元素拷贝进a中。
    for(i=0,j=0,k=p;k<=r;k++)
    {
        if(L[i]<=R[j])
            a[k]=L[i++];
        else
            a[k]=R[j++];
    }

    delete []L;
    delete []R;
}

void MergeSort(int *a, int l, int r)
{
    if(l<r)
    {
        int m = (l+r)/2;
        MergeSort(a,l,m);
        MergeSort(a,m+1,r);
        Merge(a,l,m,r);
    }
}

//附上主函数
int main()
{
    int i;
    int a[11]={2,5,8,8,66,33,2,12,0,56,20};
    for(i=0;i<11;i++)
        cout<<a[i]<<" ";
    cout<<endl;
    MergeSort(a,0,10);
    for(i=0;i<11;i++)
        cout<<a[i]<<" ";
    cout<<endl;
    return 0;
}
虽然 插入排序 的时间复杂度为O(n^2),归并排序的时间复杂度为O(nlogn),但插入排序中的常数因子使得它在n较小时,运行得要更快一些。因此,在归并排序算法中,当子问题足够小时,采用插入排序算法就比较合适了。

代码实现:

void MergeSort2(int *a, int p, int r)  
{  
    if ((r-p)>=50) // 小于50个数据的数组进行插入排序  
    {  
        int q = (p+r)/2;  
        MergeSort2(a, p, q);  
        MergeSort2(a, q+1, r);  
        Merge(a, p, q, r);  
    }else  
    {  
        InsertionSort(a+p, r-p+1);  
    }  
}  

MergeSort1与MergeSort2算法排序时间实验结果比较:

数据量

1K

10K

100K

1000K

10000K

MergeSort1

0.001s

0.008s

0.065s

0.552s

5.875s

MergeSort2

<0.001s

0.001s

0.021s

0.219s

2.317s



  • 20
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值