poj-2395

本文介绍了一种使用最小生成树算法求解在所有点均可到达情况下的最长路径的方法。通过初始化距离矩阵并运用Prim算法,不断更新点之间的最短路径,最终找到整个图中的最长边,即为所求最长路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:有n个点,求在每个点都可以到达的情况下最长的路径。

题解:最小生成树。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cstring>
#include <math.h>
#include <stdlib.h>
#include <time.h>

#define ll long long

using namespace std;
 
const int maxn = 2010;
const int INF = 0x3f3f3f3f;
 
int mp[maxn][maxn];
int d[maxn];
int vis[maxn];
int n;
int ans;

void init(){
	for(int i = 1 ; i <= n ; i++){
		for(int j = 1 ; j <= n ; j++){
			mp[i][j] = INF;
		}
	}
}

void Prime(){
    for(int i = 1; i <= n; i++){
    	d[i] = INF;
	}
    d[1] = 0;
    memset(vis, 0, sizeof(vis));
    for(int i = 1; i <= n; i++){
        int x , m = INF;
        for(int y = 1; y <= n; y++){
        	if(!vis[y] && d[y] <= m){
        		m = d[x=y];
			}
		}
        vis[x] = 1;
		ans = max(d[x],ans);
        for(int y = 1; y <= n; y++){
        	if(!vis[y]){
        		d[y] = min(d[y], mp[x][y]);
			}
		}
    }
}
int main(){
	int x,y,t,m;
	while(cin>>n>>m){
		init();
		for(int i = 1; i <= m; i++){
	    	scanf("%d %d %d",&x,&y,&t);
	    	mp[x][y] = min(mp[x][y],t);
	    	mp[y][x] = min(mp[x][y],t);
		}
	    ans = 0;
	    Prime();
	    printf("%d\n", ans);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值