算法记录——快速判定多个数(1~1e18)是否为质数(Miller_rabin)

博客介绍了如何使用Miller-Rabin算法进行质数判定,适用于大数判断。该算法虽存在错误概率,但通过多次运行可将错误率降至极低。内容包括算法原理、样例测试及数据范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

质数判定

题目描述
判定输入的数是不是质数。

输入格式
若干行,一行一个数 。
行数不超过 105
输出格式
对于输入的每一行,如果 是质数输出一行 Y,否则输出一行 N。

样例
样例输入
1
2
6
9
666623333
样例输出
N
Y
N
N
Y

数据范围与提示
1 <= x <= 1 * 1018

欢迎hack(如果你不是管理员,可以在题目讨论区发帖)。


Miller_rabin 详解链接

Miller_rabin算法
优势可以单独判断一个大数是否素数。
缺点他是一个不保证正确的算法,我们只能通过多次执行算法让这个错误的概率很小,不过幸运的是通常来看它的错误概率可以小到忽略不计。

#include <iostream> 
#include <cstdio> 
#include <algorithm>  
#include <cmath>  
#include <cstring>  
#include <map>  
using namespace std;
 
const int times = 13;
int number = 0;
 
map<long long, int>m;
long long Random
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值