常用矩阵向量求导公式

在推导机器学习的迭代更新公式过程中经常需要用到矩阵或者向量的求导操作,很多求导公式经常会忘,因此这里Mark一下,方便后面自己查阅方便。


直接包含求导向量的公式

dxTdx=IdxdxT=I d x T d x = I d x d x T = I
dxTAdx=AdAxdx=AT d x T A d x = A d A x d x = A T
dAxdxT=AdxAdx=AT d A x d x T = A d x A d x = A T
dxTxdx=2xdxTAxdx=(A+AT)x d x T x d x = 2 x d x T A x d x = ( A + A T ) x


分配率公式

uxT=(uTx)T ∂ u ∂ x T = ( ∂ u T ∂ x ) T
uTvx=uTxv+vTxuT ∂ u T v ∂ x = ∂ u T ∂ x v + ∂ v T ∂ x u T
uvTx=uxvT+uvTx ∂ u v T ∂ x = ∂ u ∂ x v T + u ∂ v T ∂ x


矩阵求导公式

ABx=AxB+ABx ∂ A B ∂ x = ∂ A ∂ x B + A ∂ B ∂ x
uTXvX=uvT ∂ u T X v ∂ X = u v T
uTXTXuX=2XuuT ∂ u T X T X u ∂ X = 2 X u u T
[(Xuv)T(Xuv)]X=2(Xuv)uT ∂ [ ( X u − v ) T ( X u − v ) ] ∂ X = 2 ( X u − v ) u T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值