矩阵求导术简单讲诉
矩阵求导术(Matrix calculus)是数学中用于处理矩阵和向量的导数计算的一种方法,尤其在优化、机器学习和神经网络中有广泛应用。它的目的是帮助我们在多个变量情况下计算函数的变化率。下面我会通过一些简单的例子来帮助理解。
1. 标量对矩阵的求导
假设有一个标量(就是一个数) f f f 作为一个关于矩阵 A A A 的函数。例如,假设 A A A 是一个 m × n m \times n m×n 的矩阵, f f f 是 A A A 的某个函数。求导的目标是找出 f f f 相对于矩阵 A A A 中各个元素的变化率。
举个例子:假设 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA),其中 tr \text{tr} tr 表示矩阵的迹,即矩阵对角线元素之和。
这个函数的求导结果是 ∂ f ∂ A = 2 A \frac{\partial f}{\partial A} = 2A ∂A∂f=2A,这里的求导操作实际上是计算每个元素对函数 f f f 的贡献。
2. 向量对矩阵的求导
当我们的输入是向量而不是标量时,求导就涉及到矩阵和向量之间的关系。假设有一个列向量 x x x 和矩阵 A A A,我们希望求导的函数是 f ( x ) = x T A x f(x) = x^T A x f(x)=xTAx,其中 x T x^T xT 是 x x x 的转置。
求导:这里 f ( x ) f(x) f(x) 是一个标量函数,它的导数是一个列向量 ∂ f ∂ x = 2 A x \frac{\partial f}{\partial x} = 2Ax ∂x∂f=2Ax。我们可以看到,矩阵 A A A 在求导过程中起到了一个线性变换的作用。
3. 矩阵对矩阵的求导
如果目标是对矩阵进行求导,比如你有一个矩阵函数 f ( A ) = A T A f(A) = A^T A f(A)=ATA,我们需要求出 ∂ f ∂ A \frac{\partial f}{\partial A} ∂A∂f 的形式。
求导:矩阵的导数 ∂ ∂ A ( A T A ) = 2 A \frac{\partial}{\partial A} (A^T A) = 2A ∂A∂(ATA)=2A,这与标量求导是相似的。
4. 矩阵求导的链式法则
与普通的标量微积分一样,矩阵求导也有链式法则。比如,假设你有一个复合函数 f ( A ) = g ( h ( A ) ) f(A) = g(h(A)) f(A)=g(h(A)),其中 g g g 和 h h h 是矩阵函数,那么:
∂ f ∂ A = ∂ g ∂ h ⋅ ∂ h ∂ A \frac{\partial f}{\partial A} = \frac{\partial g}{\partial h} \cdot \frac{\partial h}{\partial A} ∂A∂f=∂h∂g⋅∂A∂h
链式法则使得你能够通过分步计算来处理复杂的矩阵导数问题。
总结
矩阵求导术的关键是理解矩阵、向量和标量之间的关系,并通过这些关系来计算不同类型的导数。它在机器学习、深度学习等领域非常重要,尤其是在反向传播算法中,经常用到矩阵求导来计算梯度。
练习题
假设我们有一个矩阵函数 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA),其中 A A A 是一个 m × n m \times n m×n 的矩阵。我们要计算 ∂ f ∂ A \frac{\partial f}{\partial A} ∂A∂f,也就是求出矩阵 A A A 的梯度。
解题步骤
步骤 1: 理解函数的结构
函数 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 是一个矩阵的迹的函数。首先,解释一下术语:
- A T A^T AT 是矩阵 A A A 的转置。
- A T A A^T A ATA 是一个 n × n n \times n n×n 的矩阵,因为 A A A 是 m × n m \times n m×n 的矩阵, A T A^T AT 就是 n × m n \times m n×m 的矩阵,所以它们相乘的结果是 n × n n \times n n×n 的矩阵。
- tr ( A T A ) \text{tr}(A^T A) tr(ATA) 是矩阵 A T A A^T A ATA 的迹,即它的对角线元素的和。
所以,函数 f ( A ) f(A) f(A) 实际上是矩阵 A A A 的所有元素的平方和。
步骤 2: 进行求导
我们要求 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 对矩阵 A A A 的导数。这里有一个重要的矩阵求导公式:
∂ ∂ A tr ( A T A ) = 2 A \frac{\partial}{\partial A} \text{tr}(A^T A) = 2A ∂A∂tr(ATA)=2A
这条公式的推导是基于矩阵迹的性质和矩阵的导数规则。下面我们具体解释这个过程。
步骤 3: 通过分解逐步理解
首先,我们可以将 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 分解成两部分来理解。因为矩阵迹具有线性性质,我们可以拆解如下:
f ( A ) = tr ( A T A ) = ∑ i = 1 m ∑ j = 1 n a i j 2 f(A) = \text{tr}(A^T A) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2 f(A)=tr(ATA)=i=1∑mj=1∑naij2
这里, a i j a_{ij} aij 表示矩阵 A A A 中的元素,即矩阵 A A A 的第 i i i 行第 j j j 列的元素。因此,函数 f ( A ) f(A) f(A) 就是矩阵 A A A 中所有元素的平方和。
步骤 4: 对矩阵求导
现在我们要求 f ( A ) f(A) f(A) 对矩阵 A A A 的导数。矩阵的导数是按元素求导的,矩阵中的每个元素 a i j a_{ij} aij 都有一个导数。
∂ ∂ A ∑ i = 1 m ∑ j = 1 n a i j 2 = 2 A \frac{\partial}{\partial A} \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2 = 2A ∂A∂i=1∑mj=1∑naij2=2A
具体来说,每个元素的导数为 2 a i j 2a_{ij} 2aij,因此整个矩阵的导数就是 2 A 2A 2A。
步骤 5: 总结
最终,矩阵函数 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 对矩阵 A A A 的导数是:
∂ f ∂ A = 2 A \frac{\partial f}{\partial A} = 2A ∂A∂f=2A
这意味着,对于矩阵 A A A 中的每一个元素 a i j a_{ij} aij,它的导数是 2 a i j 2a_{ij} 2aij。因此,整个矩阵的梯度就是 2 A 2A 2A,即对矩阵 A A A 的每个元素求导得到的结果。
关键点总结
- 矩阵的导数是按照矩阵中每个元素来计算的。
- 迹的导数公式是常见的,能够直接应用。
- f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 的导数结果是 2 A 2A 2A,这是基于矩阵平方和的求导公式。
再来做一个具体的计算案例,使用实际的矩阵值进行求导计算。
练习题
假设我们有矩阵 A A A 为:
A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]
我们要求 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 对矩阵 A A A 的导数。
解题步骤
步骤 1: 计算 A T A A^T A ATA
首先,计算矩阵 A A A 的转置 A T A^T AT 和 A T A A^T A ATA。
矩阵 A A A 是:
A = [ 1 2 3 4 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]
那么 A T A^T AT 就是:
A T = [ 1 3 2 4 ] A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} AT=[1234]
接下来,计算 A T A A^T A ATA:
A T A = [ 1 3 2 4 ] [ 1 2 3 4 ] = [ 1 × 1 + 3 × 3 1 × 2 + 3 × 4 2 × 1 + 4 × 3 2 × 2 + 4 × 4 ] = [ 10 14 14 20 ] A^T A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 3 \times 3 & 1 \times 2 + 3 \times 4 \\ 2 \times 1 + 4 \times 3 & 2 \times 2 + 4 \times 4 \end{bmatrix} = \begin{bmatrix} 10 & 14 \\ 14 & 20 \end{bmatrix} ATA=[1234][1324]=[1×1+3×32×1+4×31×2+3×42×2+4×4]=[10141420]
步骤 2: 计算迹 tr ( A T A ) \text{tr}(A^T A) tr(ATA)
接下来,我们计算矩阵 A T A A^T A ATA 的迹。矩阵的迹是对角线元素的和:
tr ( A T A ) = 10 + 20 = 30 \text{tr}(A^T A) = 10 + 20 = 30 tr(ATA)=10+20=30
所以, f ( A ) = 30 f(A) = 30 f(A)=30。
步骤 3: 求矩阵 A A A 的导数
我们要计算 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 对矩阵 A A A 的导数。根据矩阵求导的公式,知道:
∂ ∂ A tr ( A T A ) = 2 A \frac{\partial}{\partial A} \text{tr}(A^T A) = 2A ∂A∂tr(ATA)=2A
因此,矩阵 f ( A ) f(A) f(A) 对矩阵 A A A 的梯度是:
∂ f ∂ A = 2 A = 2 × [ 1 2 3 4 ] = [ 2 4 6 8 ] \frac{\partial f}{\partial A} = 2A = 2 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} ∂A∂f=2A=2×[1324]=[2648]
步骤 4: 结果
最终,矩阵 A A A 对 f ( A ) f(A) f(A) 的导数是:
∂ f ∂ A = [ 2 4 6 8 ] \frac{\partial f}{\partial A} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix} ∂A∂f=[2648]
总结
通过这个例子,我们展示了如何使用矩阵的导数公式计算 f ( A ) = tr ( A T A ) f(A) = \text{tr}(A^T A) f(A)=tr(ATA) 对矩阵 A A A 的梯度。每一步都使用了矩阵的基本运算,并最终得到了导数结果。
继续看一个有实际物理意义的矩阵求导的例子。假设我们在物理学中讨论一个力学系统,其中涉及到惯性矩阵和动力学公式。
物理背景
在物理学中,特别是在刚体动力学中,惯性矩阵(或称为质量矩阵)描述了刚体的惯性特性,它取决于刚体的质量分布。假设有一个刚体,其质量分布描述为矩阵 M M M,那么刚体的动能 T T T 就可以表示为:
T = 1 2 v T M v T = \frac{1}{2} \mathbf{v}^T M \mathbf{v} T=21vTMv
其中:
- T T T 是刚体的动能。
- v \mathbf{v} v 是刚体的速度向量。
- M M M 是惯性矩阵(质量矩阵),它是一个对称矩阵,通常为 n × n n \times n n×n 的矩阵,表示刚体的质量分布。
- v T M v \mathbf{v}^T M \mathbf{v} vTMv 表示速度与惯性矩阵之间的内积。
问题
假设我们有一个二维系统,其中速度向量为 v = [ v 1 v 2 ] \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} v=[v1v2],惯性矩阵 M M M 为:
M = [ m 1 0 0 m 2 ] M = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} M=[m100m2]
其中 m 1 m_1 m1 和 m 2 m_2 m2 分别是沿着两个方向的质量分布。我们的目标是计算动能 T T T 对惯性矩阵 M M M 的导数 ∂ T ∂ M \frac{\partial T}{\partial M} ∂M∂T。
解题步骤
步骤 1: 计算动能 T T T
动能 T T T 可以写成:
T = 1 2 [ v 1 v 2 ] [ m 1 0 0 m 2 ] [ v 1 v 2 ] T = \frac{1}{2} \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} T=21[v1v2][m100m2][v1v2]
我们可以将其展开为:
T = 1 2 ( m 1 v 1 2 + m 2 v 2 2 ) T = \frac{1}{2} \left( m_1 v_1^2 + m_2 v_2^2 \right) T=21(m1v12+m2v22)
步骤 2: 对惯性矩阵 M M M 求导
现在,我们要求动能 T T T 对惯性矩阵 M M M 的导数。首先,根据动能公式,动能 T T T 仅依赖于惯性矩阵中的对角元素 m 1 m_1 m1 和 m 2 m_2 m2。
所以,我们可以对 T T T 分别对 m 1 m_1 m1 和 m 2 m_2 m2 求导:
∂ T ∂ m 1 = 1 2 ⋅ 2 v 1 2 = v 1 2 \frac{\partial T}{\partial m_1} = \frac{1}{2} \cdot 2 v_1^2 = v_1^2 ∂m1∂T=21⋅2v12=v12
∂ T ∂ m 2 = 1 2 ⋅ 2 v 2 2 = v 2 2 \frac{\partial T}{\partial m_2} = \frac{1}{2} \cdot 2 v_2^2 = v_2^2 ∂m2∂T=21⋅2v22=v22
因此,惯性矩阵 M M M 对动能 T T T 的梯度(矩阵导数)是:
∂ T ∂ M = [ v 1 2 0 0 v 2 2 ] \frac{\partial T}{\partial M} = \begin{bmatrix} v_1^2 & 0 \\ 0 & v_2^2 \end{bmatrix} ∂M∂T=[v1200v22]
步骤 3: 物理意义
- ∂ T ∂ m 1 = v 1 2 \frac{\partial T}{\partial m_1} = v_1^2 ∂m1∂T=v12 表示动能 T T T 对 m 1 m_1 m1 的导数与速度 v 1 v_1 v1 的平方成正比。这意味着,如果质量 m 1 m_1 m1 增加,动能的变化将与 v 1 v_1 v1 的平方成正比。
- 同理, ∂ T ∂ m 2 = v 2 2 \frac{\partial T}{\partial m_2} = v_2^2 ∂m2∂T=v22 表示动能 T T T 对 m 2 m_2 m2 的导数与速度 v 2 v_2 v2 的平方成正比。
这种求导方法可以帮助我们理解质量分布如何影响刚体的动能,尤其是在多自由度系统中,惯性矩阵的不同元素如何通过速度的不同分量影响系统的能量。
总结
这个例子展示了如何使用矩阵求导来分析物理系统中的动能与质量分布的关系。通过求导,我们得到了动能对惯性矩阵的梯度,这对于优化和分析动力学系统的行为非常重要。