📌 第一步:进入百宝箱平台并创建应用
-
登录平台
访问 百宝箱,进入百宝箱首页。若未注册,先完成账号注册(参考赛事链接注册流程)。 -
新建应用
点击首页 “新建应用” 按钮,选择智能体类型:- 对话型:适合问答、聊天类助手(如宠物知识问答 “猫小咪”)。
- 内容生成型:支持文本生成、图片生成(如 “为你写诗”“粘土风图片转换器”)。
- 工作流型:通过流程编排实现复杂功能(适合简历筛选、旅行规划等)。
示例:若创建旅游助手,选择 “对话型” 或 “工作流型”。
📌 第二步:配置智能体基本信息
填写应用名称与功能
- 输入智能体名称(如 “才聚宝盒” 简历筛选器),功能介绍(选填),例如:“智能解析简历,按岗位需求筛选候选人”。
定义角色与指令
- 角色设定:用自然语言描述智能体身份,例如:“你是专业的 HR 助手,能精准提取简历中的学历、工作经验、技能等信息,并根据岗位要求筛选候选人。”
- 目标与技能:明确功能目标,如 “1. 解析 PDF/Word 简历;2. 支持自定义筛选条件(学历、工作年限、关键词);3. 按匹配度排序结果”。
- 回复示例:添加用户问题示例及预期回复,如 “用户问:‘筛选 3 年以上开发经验的候选人’,回复:‘已为你筛选出 5 份符合条件的简历,匹配度从高到低排序如下...’”。
📌 第三步:接入工具与扩展功能(关键!)
添加知识库(可选)
- 若智能体需要特定领域知识(如行业术语、公司招聘标准),
点击 “知识库” 添加文档,系统会自动索引内容,让智能体回答更准确。
接入 MCP 插件(提升能力核心)
- 进入 “插件市场 - MCP 专区”,选择官方预部署的 MCP 服务(开箱即用),例如:
- Fetch 官方插件:抓取网页内容(可用于获取招聘信息)。
- Time 官方插件:获取当前时间(筛选应届生毕业时间等)。
- NLP 相关 MCP:增强文本解析能力(提取简历关键词)。
- 操作步骤:
- 在插件市场找到目标 MCP(如 “Fetch”),点击 “添加”。
- 配置插件参数(如 API 密钥,部分插件无需额外设置)。
- 在工作流中拖入 “插件节点”,调用 MCP 功能(例如用 Fetch 抓取招聘网站岗位要求,与简历内容匹配)。
📌 第四步:设计对话流程与交互逻辑
-
设置开场白与引导
编写智能体首次回复内容,引导用户操作,例如:“你好~我是‘才聚宝盒’,请上传简历文件或输入筛选条件(如‘筛选 Java 开发,3 年经验’),我会为你推荐合适的候选人哦~”
-
配置用户问题建议
添加常见问题示例,帮助用户正确提问,如:“如何上传简历?”“筛选条件怎么设置?” 系统会根据这些示例优化回复逻辑。
- 设计工作流(复杂功能必选)
若选择 “工作流” 构建方式,通过拖放节点编排流程:
- 大模型节点:理解用户意图(如 “解析简历”“设置筛选条件”)。
- 插件节点:调用 MCP 工具(如用 Fetch 获取岗位关键词,用 NLP 插件解析简历)。
- 分支节点:根据条件判断流程(如 “若简历格式为 PDF,调用 PDF 解析插件;若为 Word,调用 Word 解析插件”)。
- 结果重排节点:按匹配度排序筛选结果。
📌 第五步:模型设置与测试优化
-
选择底层大模型
- 在 “模型设置” 中选择适合的大模型(如 “通义千问・Max”),如需更高精度可调整参数(如温度值越低,回答越确定)。
-
调试智能体
- 点击 “运行” 按钮,模拟用户提问测试功能:
- 上传测试简历,输入筛选条件(如 “本科,2 年以上 AI 相关经验”),检查解析结果和筛选准确性。
- 若出现错误(如简历解析失败),查看日志并调整插件配置或工作流逻辑。
-
优化交互体验:
- 确保回复逻辑清晰,主动引导用户(如 “未找到符合条件的简历,是否需要调整筛选条件?”),记忆上下文(如用户之前设置的岗位类型,下次提问时自动关联)。
📌 第六步:发布与上线(请仔细阅读:百宝箱平台服务协议)
-
发布智能体
- 调试通过后,点击 “发布” 按钮,填写版本信息(如 “才聚宝盒 V1.0”),选择发布平台:
- 支付宝小程序:一键发布,生成二维码供用户扫码使用。
- Web 服务:获取公开链接,嵌入官网或应用广场。
- 小程序应用广场:上架后获得更多曝光(需审核)。
- 调试通过后,点击 “发布” 按钮,填写版本信息(如 “才聚宝盒 V1.0”),选择发布平台:
-
获取公开链接
- 发布成功后,在应用详情页找到 “公开访问链接”,参考文档中的 “公开访问链接获取示意图”,保存链接用于赛事提交或用户分享。
📌 第七步:记录开发过程(技术博客必备)
撰写教程内容
按阶段记录开发步骤,重点包括:
- 需求分析(如简历筛选的核心功能)。
- MCP 插件的选择与配置(如 Fetch 如何抓取招聘关键词)。
- 工作流设计难点(如多格式简历解析的分支逻辑)。
- 测试中遇到的问题及解决方案(如简历解析准确率优化)。
💡 关键技巧与参考资源
- 快速搭建技巧:使用 “简单构建” 模式,AI 会自动生成基础回复(如文档中 “猫小咪” 的示例),适合新手快速上手。
- MCP 专区入口:在插件市场搜索 “MCP”,优先选择官方预部署的服务(如 “Amap Maps”“Time”),无需复杂部署即可使用。
- 问题反馈:开发中遇到 bug,可通过文档中的飞书链接提交(Sheet)。
按照以上步骤,即使是零基础用户也能在百宝箱平台快速搭建功能完善的智能体,友友们快去试试吧! 🌟