hdu 5381 The sum of gcd

题意:


对于每次查询,计算

i=lrj=irgcd(ai,ai+1,,aj)


想法:


首先需要对于每一个 i 预处理出[i,in]这些区间的 gcd 情况,即 gcd(ai),gcd(ai,ai+1),,gcd(ai,ai+1,,an) ,显然这些 gcd 中最多只有 log 个数,所以我们可以在 O(logn) 的时间内,对于每个 i 得到log段gcd信息,包括 gcd 和此 gcd 覆盖的区间,记为 gcdleft


同理,我们预处理出 [1i,i] 区间的 gcd 信息, 记为 gcdright


现在开始查询操作,使用莫队,假如知道 [l,r] 区间的结果,现在从左端加入一个数,即左端点变为 l=l1 , 那么现在的结果就要增加 ri=lgcd(al,al+1,,ai) ,这个显然最多只有 log 段,利用 gcdleft 的信息,可以在 log 的时间内,得到结果。同理从左端删除一个数,就先需要减去 ri=lgcd(al,al+1,,ai) , 然后 l=l+1

同理在右端点的操作,就利用 gcdright 的信息就行了。

#include <stdio.h>
#include <algorithm>
#include <math.h>

const int N = (int)(1e4)+5;

int t,n,m,a[N],ppos[N];
long long ans[N];

int v1[N][35], v2[N][35], v3[N][35], v4[N][35];
int size1[N], size2[N];

struct Q{
    int l,r,id;
    bool operator < (const Q &a ) const{
        if(ppos[l] == ppos[a.l]) return r<a.r;
        return ppos[l] < ppos[a.l];
    }
}q[N];


int gcd(int a, int b){
    return !b?a:gcd(b, a%b);
}

int pool[50], pos[50], cnt;

void unique(int &cnt){
    int id = 0, p = pos[0];
    for(int i=0; i<cnt; i++){
        if(pool[i] != pool[id]){
            pos[id] = p; id++;
            p = pos[i]; pool[id] = pool[i];
        }
    }
    pos[id] = p;
    cnt = id+1;
}

void init(){
    cnt = 0;
    for(int i=n; i>=1; i--){
        for(int j=0; j<cnt; j++) pool[j] = gcd(pool[j], a[i]);
        pool[cnt] = a[i]; pos[cnt++]=i;
        unique(cnt);
        for(int j=cnt-1; j>=0; j--){
            v1[i][cnt-1-j] = pool[j];
            v2[i][cnt-1-j] = pos[j];
        }
        size1[i] = cnt;
    }

    cnt = 0;
    for(int i=1; i<=n; i++){
        for(int j=0; j<cnt; j++) pool[j] = gcd(pool[j], a[i]);
        pool[cnt] = a[i]; pos[cnt++] = i;
        unique(cnt);
        for(int j=cnt-1; j>=0; j--){
            v3[i][cnt-1-j] = pool[j];
            v4[i][cnt-1-j] = pos[j];
        }
        size2[i] = cnt;
    }

}

int l,r;
long long sum;

void add_l(int v){
    int s = l, t = r;
    long long tmp = 0;
    int last = s;
    for(int i=0; i<size1[l]; i++){
        if(v2[l][i] < s) continue;
        else if(v2[l][i] > t){
            tmp += (t - last + 1) *1LL *v1[l][i];
        }
        else{
            tmp +=  (v2[l][i] - last + 1) *1LL* v1[l][i];
            last = v2[l][i] + 1;
        }

        if(v2[l][i] >= t) break;
    }
    sum += v*tmp;
}


void add_r(int v){
    int s = l, t = r;
    long long tmp = 0;
    int last = t;
    for(int i=0; i<size2[r]; i++){
        if(v4[r][i] > t) continue;
        else if(v4[r][i] < s){
            tmp += (last - s + 1) * 1LL * v3[r][i];
        }else{
            tmp += (last - v4[r][i] + 1) *1LL * v3[r][i];
            last = v4[r][i]-1;
        }

        if(v4[t][i] <= s) break;
    }
    sum += v*tmp;
}

int main(){
    scanf("%d", &t);
    for(int ca=1; ca<=t; ca++){
        scanf("%d", &n);
        int S = (int)(sqrt(n*1.0) + 0,5);
        for(int i=1; i<=n; i++){
            ppos[i] = (i-1)/100;
        }
        for(int i=1; i<=n; i++) scanf("%d", &a[i]);;
        init(); scanf("%d", &m);
        for(int i=0; i<m; i++){
            scanf("%d%d", &q[i].l, &q[i].r);
            q[i].id = i;
        }
        std::sort(q, q+m);
        sum = 0, l = 1, r = 0;
        for(int i=0; i<m; i++){
            if(r<q[i].r){
                for(r=r+1; r<=q[i].r; r++){
                    add_r(1);
                }
                r--;
            }
            if(r>q[i].r){
                for(;r>q[i].r; r--){
                    add_r(-1);
                }
            }
            if(l>q[i].l){
                for(l=l-1; l>=q[i].l; l--){
                    add_l(1);
                }
                l++;
            }
            if(l<q[i].l){
                for(; l<q[i].l; l++){
                    add_l(-1);
                }
            }
            ans[q[i].id] = sum;
        }
        for(int i=0; i<m; i++){
            printf("%I64d\n", ans[i]);
        }
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值