归并排序快的原因:
后面的排序利用了前面排序的结果!!!
1.小和问题
在一个数组中, 每一个数左边比当前数小的数累加起来, 叫做这个数组的小和。 求一个数组的小和。
- 例子:[1,3,4,2,5]
- 1左边比1小的数, 没有;
- 3左边比3小的数, 1;
- 4左边比4小的数, 1、 3;
- 2左边比2小的数, 1;
- 5左边比5小的数, 1、 3、 4、 2;
- 所以小和为1+1+3+1+1+3+4+2=16
使用归并排序解决。
大概思路:
先分:
合的时候,比较,确定需要合并的另一部分中比目前这组中的的每个数大的有几个:
5和4,合的时候,两个指针p1,p2,分别指向5和4。
arr[p1]>arr[p2],不用算小和,因为大的在左边。
所以直接合并。
接下来,合并1、4和5:
arr[p1]<arr[p2],说明要合并的另一半中的数都比1(arr[p1])大,要计算小和:
res=(R-p2+1)*arr[p1]=(1-0+1)*1=2; //R是数组中最后一位元素的下标
小和计算完毕,合并:
5和2的合并时:
arr[p1]>arr[p2],不用算小和,直接合并:
8、5和2合并时:
arr[p1]>arr[p2],不用算小和,直接合并:
合并1和4和5、2和5和8时:
arr[p1]<arr[p2],要计算小和(p2后的都比arr[p1]大):
res=arr[p1]*(R-P2+1)=1*(2-0+1)=3;
arr[p1]放入result数组(和归并排序一样);
p1右移:
arr[p1]>arr[p2],不计算小和,arr[p2]放入result数组;
p2右移:
arr[p1]<arr[p2],计算小和:
res=arr[p1]*(R-p2+1)=4*(2-1+1)=8;
arr[p1]放入result数组;
p1右移:
arr[p1]=arr[p2],不计算小和,将arr[p2]放入result数组;
p2右移:
arr[p1]<arr[p2],计算小和:
res=arr[p1]*(R-p2+1)=5*(2-2+1)=5;
将arr[p1]放入result数组;
p1右移,左半数组完,将右半数组剩余元素放入result数组。
最终res=2+3+8+5=18;
result={1,2,4,5,5,8};
代码实现:
package Solution;
public class SmallSum {
public static void main(String[] args) {
int[] array= {1,5,4,8,5,2};
int value=mergeSort(array);
System.out.print(value);
}
public static int mergeSort(int[] arr) {
if(arr==null||arr.length<2)
return 0;
return sortProcess(arr,0,arr.length-1);//此处注意串的是下标
}
public static int sortProcess(int[] arr,int L,int R) {
if(L==R)
return 0;
int mid= L + ((R - L) >> 1);
/*
* mid=(L+R)/2不安全,因为R+L可能会溢出,然后除以2结果可能会不准确
* mid=L+(R-L)/2是安全的;
* a/2=a>>1(一个数除以2,等于它右移一位)
* 所以mid=L+(R-L)>>1;
* 用右移的原因:位运算比算术运算快很多
*/
return sortProcess(arr,L,mid)
+sortProcess(arr,mid+1,R)
+merge(arr,L,mid,R);
}
public static int merge(int[] arr,int L,int mid,int R) {
//注意此处的R是末尾元素的位置,不是长度
int[] result=new int[R-L+1];//所以此处求长度应+1
int p1=L;
int p2=mid+1;
int i=0;
int value=0;
while(p1<=mid&&p2<=R) {
//所以此处比较应该包含mid和R,就是≤,而不是<
value+=arr[p1]<arr[p2]?arr[p1]*(R-p2+1):0;
result[i++]=arr[p1]<arr[p2]?arr[p1++]:arr[p2++];
}
while(p1<=mid) {
//p1没越界,即p2越界
result[i++]=arr[p1++];
}
while(p2<=R) {
result[i++]=arr[p2++];
}
for(int j=0;j<result.length;j++) {
//复制元素的时候,要注意下标,因为传入的arr是从L~R的,不是从0~arr.length-1
arr[j+L]=result[j];
}
return value;
}
}
运行结果:
2.逆序对问题
在一个数组中, 左边的数如果比右边的数大, 则折两个数构成一个逆序对, 请打印所有逆序对。
和计算小和差不多,这个是找要合并的另一半中,比自己小的元素,组成逆序对,打印。
具体:
arr[p1]>arr[p2]时,打印(arr[p1~mid],arr[p2])。
代码实现:
package Solution;
public class ReSequen{
public static void main(String[] args) {
int[] array= {1,5,4,8,3,2};
mergeSort(array);
for(int i=0;i<array.length;i++)
System.out.print(array[i]+" ");
}
public static void mergeSort(int[] arr) {
if(arr==null||arr.length<2)
return ;
sortProcess(arr,0,arr.length-1);//此处注意串的是下标
}
public static void sortProcess(int[] arr,int L,int R) {
if(L==R)
return;
int mid= L + ((R - L) >> 1);
/*
* mid=(L+R)/2不安全,因为R+L可能会溢出,然后除以2结果可能会不准确
* mid=L+(R-L)/2是安全的;
* a/2=a>>1(一个数除以2,等于它右移一位)
* 所以mid=L+(R-L)>>1;
* 用右移的原因:位运算比算术运算快很多
*/
sortProcess(arr,L,mid);
sortProcess(arr,mid+1,R);
merge(arr,L,mid,R);
}
public static void merge(int[] arr,int L,int mid,int R) {
//注意此处的R是末尾元素的位置,不是长度
int[] result=new int[R-L+1];//所以此处求长度应+1
int p1=L;
int p2=mid+1;
int i=0;
while(p1<=mid&&p2<=R) {
//所以此处比较应该包含mid和R,就是≤,而不是<
if(arr[p1]>arr[p2])
for(int k=p1;k<=mid;k++)
System.out.println("("+arr[k]+","+arr[p2]+")");
result[i++]=arr[p1]<arr[p2]?arr[p1++]:arr[p2++];
}
while(p1<=mid) {
//p1没越界,即p2越界
result[i++]=arr[p1++];
}
while(p2<=R) {
result[i++]=arr[p2++];
}
for(int j=0;j<result.length;j++) {
//复制元素的时候,要注意下标,因为传入的arr是从L~R的,不是从0~arr.length-1
arr[j+L]=result[j];
}
}
}
运行结果:
2.给定一个数组arr, 和一个数num, 请把小于等于num的数放在数组的左边, 大于num的数放在数组的右边。
要求额外空间复杂度O(1), 时间复杂度O(N)。
分析:只说大于的在右边,没要求有序。
方法:
- 设置一个指针X,开始位置位于数组第一个元素位置的前一个;
- 然后从数组第一个元素开始,和num进行比较;
- 大于,继续比较后一个;
- 小于等于,X右移(扩大“小于等于域”)——将这个数和小于等于域的下一个数交换,X+1(扩大X域)——X左边都是小于等于num的,右边是大于num的;
代码实现:
package Solution;
public class partSort {
public static void main(String[] args) {
int[] array= {1,5,4,8,3,2};
partsort(array,5);
for(int i=0;i<array.length;i++)
System.out.print(array[i]+" ");
}
public static void partsort(int[] arr,int num) {
int X=-1;
for(int i=0;i<arr.length;i++) {
if(arr[i]<num) {
swap(arr,i,X+1);
X++;
}
}
}
public static void swap(int[] arr,int i,int j) {
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
}
运算结果:
3.荷兰国旗问题
给定一个数组arr, 和一个数num, 请把小于num的数放在数组的左边, 等于num的数放在数组的中间, 大于num的数放在数组的右边。
方法1:
- 设置一个指针less,开始位置位于数组第一个元素位置的前一个;
- 设置一个指针more,开始位置位于数组最后一个元素位置的后前一个;
- 然后从数组第一个元素开始,和num进行比较;
- 等于,向后移动;
- 大于,和最后一个位置的元素交换(扩大“more区域”),more前移;
- 小于,和第一个位置的元素交换(扩大“less区域”),less后移;
代码实现:
package Solution;
public class HeLan {
public static void main(String[] args) {
int[] array= {1,5,4,8,3,5,9,5,6,2};
helansort(array,5);
for(int i=0;i<array.length;i++)
System.out.print(array[i]+" ");
}
public static void helansort(int[] arr,int num) {
int less=-1;
int more=arr.length;
for(int i=0;i<more;i++) {
if(arr[i]==num)
continue;
else if(arr[i]<num) {
swap(arr,i,less+1);//和小于域的后一个位置的元素交换,叩打小于域
less++;
}
else {
swap(arr,i,more-1);//和大于域的前一个位置的元素交换,扩大大于域
more--;
i--;//交换之后,还得在原位置再比一次
/*
* less那不减,是因为:less~i之间的元素已经比较过了
* 但是more这边,i~more之间的数都没比过,所以交换了more的前一个位置的元素后,还得比一次
*/
}
}
}
public static void swap(int[] arr,int i,int j) {
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
}
运行结果:
方法2:
- 设置一个指针less,开始位置位于数组第一个元素位置的前一个;
- 设置一个指针more,开始位置位于数组最后一个元素位置的后前一个;
- 然后从数组第一个元素开始,和num进行比较;
- 等于,向后移动;
- 大于,和最后一个位置的元素交换(扩大“more区域”),more前移,i(指向当前元素的指针)指针不动;
- 小于,和第一个位置的元素交换(扩大“less区域”),less后移,i后移一位(因为确定交换过来的元素肯定等于num);
代码实现:
package Solution;
public class HeLan {
public static void main(String[] args) {
int[] array= {1,5,4,8,3,5,9,5,6,2};
int[] result=helansort(array,5,0,array.length-1);
for(int i=0;i<array.length;i++)
System.out.print(array[i]+" ");
System.out.println();
System.out.println("相等的区间是:["+result[0]+","+result[1]+"]");
}
public static int[] helansort(int[] arr,int num,int L,int R) {
int less=L-1;
int more=R+1;
while(L<more){
if(arr[L]==num)
L++;
else if(arr[L]<num) {
swap(arr,L++,++less);
}
else {
swap(arr,L,--more);
}
}
return new int[] {less+1,more-1};
}
public static void swap(int[] arr,int i,int j) {
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
}
运行结果:
分析:
若有于区域不存在,会不会出现问题?
不会的。
- 若小于区域不存在,则等于区域开始位置为数组首元素的位置;
- 若大于区域不存在,则等于区域结束位置为数组末元素的位置;
- 若等于区域不存在,则它的开始位置等于结束位置(less+1=more-1);