动态规划-二维dp数组和滚动数组

二维数组

如上图,一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

看到这道题,查找从A点到B点的路径,如果对图论比较熟悉的话,可能第一印象是用图论的深度优先搜索来实现.

func dfs(i int, j int, m int, n int) int {
	if i > m || j > n {
		return 0
	}
	if i == m && j == n {
		return 1
	}
	return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n)
}

时间复杂度O(n) = 2^(m+n+1)

从动态规划的角度来思考这个问题,我们要解决的是计算从(0,0)点到(m,n)点的路径数量,根据我们上一张总结的动态规划步骤,

第一步:确定dp数组

dp[m][n]:从(0,0)点到(m,n)点的路径数量

第二步:递推公式

按照题目的描述,每次只能向下或者向右移动一步,所以dp[m][n] = dp[m-1][n] + dp[m][n-1];

第三步:dp数组初始化

dp[0][i] = 1;
dp[j][0] = 1;

第四步:确定遍历顺序

遍历的顺序:从前到后遍历

第五步:举例推导dp数组

实现:

func uniquePaths(m int, n int) int {

	dp := make([][]int, m);
	for k := range dp {
		dp[k] = make([]int, n)
	}
	for i := 0; i < m; i ++ {
		dp[i][0] = 1;
	}
	for j := 0; j < n; j ++ {
		dp[0][j] = 1;
	}
	for i := 1; i < m; i ++ {
		for j := 1; j < n; j ++ {
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
		}
	}
	return dp[m - 1][n - 1]
}

时间复杂度:m * n 空间复杂度:m * n

如果将这个代码在力扣上提交过后, 你会发现,在内存消耗上,你只打败了百分之44的人.意味着有一半以上的人,在空间利用上会比这个方式更好.

那我们的代码是否还有优化的空间呢? 当然也是有的.

滚动数组

动态规划本就是一个记录再利用的高效算法,由于其要记录之前的状态,必然会使用大量空间,要优化动态规划算法的空间,我们必然要合理利用dp数组,有一种优化方法就是利用滚动数组来进行状态转移。

要优化空间复杂度,我们要理解我们dp数组里存的是什么.

先从一个一维的dp数组说起, 斐波拉契数列公式,dp[n] = dp[n - 1] + dp[n - 2], 空间复杂度为O(n);

从这个公式我们可以看出, 在计算dp[n]时,其实只用到了dp[n - 1]和dp[n - 2]. 所以我们只需要定义使用三个变量存储这三个值,依次往后替换,就能达到目的;

代码如下:

func fib(n int) int {
	dp := make([]int, 3, 3)
	dp[1] = 0
	dp[2] = 1
	for i := 2; i <=n; i++ {
		dp[0] = dp[1]
		dp[1] = dp[2]
		dp[2] = dp[0] + dp[1]
	}
	return dp[2]
}

空间复杂度为:O(1),时间复杂度:O(n)

二维的dp数组怎么处理呢? 从上面那个求网格路径数量的代码中,我们可以看到,数据的填充顺序是,初始化,然后一层一层的遍历下去的.

并且根据推导公式 dp[i][j] = dp[i - 1][j] + dp[i][j - 1] , 我们可以使用一个一维数组存放每一层遍历算出来的结果dp[n],到下一层遍历的时候,

dp[n] = dp[n] + dp [n - 1];

公式解析: 等号左边的dp[m]是当前正在遍历的这一层下标为n的位置的路径数量, 右边的dp[n]代表上一层下标为n的位置的路径数量, 而dp[n - 1]是当前正在遍历的这一层的下标为n-1的位置的路径数量.其实与之前的公式是一致的,只是将二维数组缩减为了一维数组.

代码如下:

func uniquePaths(m int, n int) int {

	dp := make([]int, n);
	for j := 0; j < n; j ++ {
		dp[j] = 1;
	}
	for i := 1; i < m; i ++ {
		for j := 1; j < n; j ++ {
			dp[j] = dp[j] + dp[j - 1]
		}
	}
	return dp[n - 1]
}

空间复杂度为:O(n),时间复杂度:O(m*n)

提交力扣,恭喜你,在内存消耗上打败了百分之90的人.

参考: https://www.zhihu.com/question/39948290

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值