POJ 1190 生日蛋糕

6 篇文章 0 订阅
3 篇文章 0 订阅

POJ 1190
生日蛋糕
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 23271 Accepted: 8320
Description

7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
Input

有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output

仅一行,是一个正整数S(若无解则S = 0)。
Sample Input

100
2
Sample Output

68
Hint

圆柱公式
体积V = πR2H
侧面积A’ = 2πRH
底面积A = πR2

重刷POJ的第一题,经典搜索之——生日蛋糕。
题意:求制作一个m层,体积为v的蛋糕需要奶油的最小表面积,限制条件为:下面一层的半径以及高度至少要比上一层的大1.
题解:用**dfs(int r 当前的半径,int h当前的高度,int q当前的表面积,int deep当前的层数,int v当前的体积)**维护
值得深思的是,用dfs搜索必须要有一个极限,那么r的极限是什么?h的极限是什么?
我们不妨假设整个蛋糕只有一个圆柱,因为体积最大为10000,所以如果其高度为1,那么r最大为100;如果其半径为1,那么高度最大为10000;
那么就可以有如下的代码:

	dfs(100,10000,0,m,0);

int dfs(int r,int h,int q,int deep,int v)
{
    if(deep<0) return 0;
    if(deep==0&&v==n){//当满足条件时,更新最优解。
        if(q+pre_r*pre_r<ans) ans=q+pre_r*pre_r;
        return 0;
    }

/*
从最下层往上枚举。
*/
    for(int i=r-1;i>=deep;i--)
    {
        if(deep==m) pre_r=i;
        for(int j=h-1;j>=deep;j--)
        {
            dfs(i,j,q+2*i*j,deep-1,v+i*i*j);
        }
    }
}

这样还不行,我们还需要考虑剪枝

  1. 从下往上枚举;
  2. 当deep<0时return;
  3. 当 当前体积大于n,return;
  4. 当 当前表面积大于ans;return;
  5. 当 就算剩下的层数取最大体积仍不足以使体积≥v;return

以下为代码:

#include <iostream>

using namespace std;
int n,m;
int ans=0x7fffffff;
int pre_r;//最下面一层的半径
int dfs(int r,int h,int q,int deep,int v)
{
    if(q+pre_r*pre_r>ans||v>n||deep<0) return 0;//剪枝2、3、4
    if(deep==0&&v==n){
        if(q+pre_r*pre_r<ans) ans=q+pre_r*pre_r;
        return 0;
    }


    for(int i=r-1;i>=deep;i--)//剪枝1
    {
        if(deep==m) pre_r=i;
        for(int j=h-1;j>=deep;j--)
        {
        //****************************//**剪枝5**
            int sum=0;
            for(int k=0;k<=deep-1;k++)
                sum+=(i-k)*(i-k)*(j-k);
            if(sum+v<n)continue;
         //********************************
            dfs(i,j,q+2*i*j,deep-1,v+i*i*j);
        }
    }
}


int main()
{
    cin>>n>>m;
    dfs(100,10000,0,m,0);
    if(ans==0x7fffffff) ans=0;
    cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值