目录
实验方案设计(2.1 Experimental design and data collection)
三维重建&处理(2.2 Three-dimensional reconstruction and processing)
三维模型分割(2.3 3D-model segmentation)
植物生长表型分析(2.4 Plant growth phenotyping)
原文:
主体篇幅目录:
1、Introduction
2、Materials and methods
2.1 Experimental design and data collection
2.2 Three-dimensional reconstruction and processing
2.3 3D-model segmentation
2.3.1 Orientation and scaling
2.3.2 Main stem and petioles segmentation
2.3.3. Single-leaf segmentation
2.4 Plant growth phenotyping
2.4.1. Plant growth analysis
Abstract
(cv. 栽培变种)
高通量植物表型需要集成的基于图像的工具来自动和同时定量多种形态和生理性状,这是植物对限制环境条件的敏感性的有价值的指标。
在本研究中,我们提出了一种新的基于三维(3D)建模的分割算法,通过表型平台和结构从Structure from motion(SfM)方法获得。该算法最初在4个盆栽商业番茄品种的3D模型上进行了测试,即“圣皮埃尔”(S)、“科斯特罗托”(C)、“雷吉内拉”(R)和“Gianna”(G),用于鉴定植物的主要表型性状(高度、角度和面积)。
结果表明,该算法能够自动检测和测量株高(=0.98、=0.34cm、=3.12%和=6.03)、叶柄倾斜度(=0.96、=1.35◦、MAPE=3.64%和=22.16)、单叶面积(=0.98、=0.95cm2、=7.40%和=14.91)和单叶角(=0.84、=1.43◦、=2.17%和=15.83)。
作为研究案例,利用该算法监测了同一番茄品种对早期土壤水分(FTSW)连续20天的动态响应。对植株进行三种处理(100%全灌、50%亏缺灌溉和0%无灌溉)。
结果表明,R和G cv. 的株高是对水分胁迫最敏感的表型性状(FTSW值为0.58时,植株生长抑制),而FTSW较低时,总叶面积和蒸腾速率开始受到影响(分别为0.52和0.40)。
相反,S和C cv. 在分析的表型性状中没有表现出任何显著的变化,可能是因为这些品种的生长速度缓慢,允许它们消耗更少的水,因此没有达到水分胁迫阈值。结果表明,株高性状可用于后续分析,便于快速鉴定抗逆境番茄品种,从而加强杂交方案。
含义公式与代码实现原文:预测评价指标RMSE、MSE、MAE、MAPE、SMAPE_手撕机的博客-CSDN博客_mae
均方根误差RMSE、均方误差MSE、平均绝对误差MAE、平均绝对百分比误差MAPE、对称平均绝对百分比误差SMAPE
# MAPE和SMAPE需要自己实现
def mape(y_true, y_pred):
return np.mean(np.abs((y_pred - y_true) / y_true)) * 100
def smape(y_true, y_pred):
return 2.0 * np.mean(np.abs(y_pred - y_true) / (np.abs(y_pred) + np.abs(y_true))) * 100
y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
# MSE
pri