一、激活函数
# sigmoid函数
from torch.nn import functional as F
a = torch.linspace(-100,100,12)
print(torch.sigmoid(a))
# F.sigmoid(a)
# tensor([0.0000e+00, 2.9296e-36, 2.3072e-28, 1.8169e-20, 1.4309e-12, 1.1267e-04,
# 9.9989e-01, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00, 1.0000e+00])
# tanh函数
a = torch.linspace(-1,1,12)
print(torch.tanh(a))
# tensor([-0.7616, -0.6741, -0.5624, -0.4256, -0.2662, -0.0907, 0.0907, 0.2662,
# 0.4256, 0.5624, 0.6741, 0.7616])
# relu函数
print(torch.relu(a))
# tensor([0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0909, 0.2727, 0.4545,
# 0.6364, 0.8182, 1.0000])
二、Loss
MSE 均方差
Grad函数求导
或者直接用mse.backward() 自动计算导数并且更新到反向传播中
查看的时候可以直接w.grad 也可以w.grad.norm查看较大的导数的norm
多输出感知机
链式求导法则