Discrete-Continuous Optimization for Multi-Target Tracking翻译(里面的公式由于无法粘贴,大家参照paper结合看)

本文提出了一个多目标跟踪方法,通过离散连续能量最小化联合处理数据相关和轨迹估计。方法首先将多目标跟踪问题视为离散连续优化问题,使用离散优化进行数据相关,而轨迹估计则采用连续拟合。通过这种方式,既保留了离散优化的全局最优性,又避免了预计算轨迹的限制,提高了轨迹估计的精度。实验表明,这种方法在多个标准数据集上表现出较高的准确性和鲁棒性。
摘要由CSDN通过智能技术生成

多目标跟踪的离散连续优化

摘要:多目标跟踪的问题由两个不同的、但紧密耦合的挑战组成:(1)数据相关的自然离散问题,即将图像观测分配给适当的目标;(2)轨迹估计的自然连续问题,即恢复所有目标的轨迹。为了优化数据相关的简单贪婪解决方案,最近的方法经常使用离散优化执行多目标跟踪。这有一个缺点,轨迹需要预先计算或离散,从而限制了精度。在本文中,我们将多目标跟踪作为一种讨论其自然领域中各个方面的优化问题,并允许利用强大的方法进行多模型拟合。数据相关采用离散优化的标签成本,接近最优。轨迹估计是一种简单的封闭解的连续拟合问题,该方法用于更新标签成本。我们在几个标准数据集上展示了我们的方法的准确性和鲁棒性。

关键字:多目标跟踪,离散,连续,轨迹估计,数据相关,优化。

1. 引言

多目标跟踪研究近年来取得了显著的进展。然而,目前的算法在相对简单的条件下,只有很少的目标才能达到合理的性能。目前许多最成功的跟踪方法都是通过检测来进行跟踪的,即目标是由一个可以在每个帧中独立检测的对象模型来表示的[20,25],在某些情况下,结合一个在线模型来处理光照和外观变化[11]。使用对象检测器的优点是,如果目标丢失,它自然会重新初始化,避免过多的模型漂移[7]。探测器为当前目标提供每帧的证据。因此,在处理单一目标时,跟踪实际上是拟合一个单一的时间一致的轨迹,这样它就能最优地解释这一证据。在多目标情况下,任务的难度要大得多,因为数据相关的问题必须同时处理。从直觉上讲,必须为每一个目标建立一个独特的身份,然后同时估计所有目标的运动模式和对目标的探测任务。

1.1问题引出

这带来了许多艰难的挑战。首先,目标的数量通常是未知的,随着时间的推移可能会有所不同。

此外,探测器的输出只有部分可靠,因此必须解释到丢失的证据(漏警),以及错误的证据(假警报)

除非目标始终保持良好的分离,否则可能的轨迹空间会随着时间呈指数增长,这一事实进一步复杂化了这项任务。此外,轨迹应遵循一定的约束条件:

例如两个目标不能同时处于同一位置。解决这些挑战需要处理两个不同的、但紧密耦合的建模问题。将每个检测标记为属于某个目标或者是一个假警报,本质上属离散域。对于所观察到的场景的合理解释,同样的检测只能有一个标签。然而,随着时间的推移,目标位置自然会被描述为一个连续的状态空间(这也可能包括诸如尺寸、速度等深层次的维度)

现有技术以不同的方式在两项任务之间取得平衡。最近的大量工作集中在数据相关上,并使用强大的离散优化算法来解决这个NP难题。然而,轨迹估计在连续方面遇到的问题,要么是因为轨迹必须在没有任何数据相关的情况下预先计算[26,27],要么是空间离散化的轨迹[2,4]。其他技术将重点放在连续状态空间的轨迹估计上,但是将数据相关限制在一组预先计算的可能的标签中[17]。基于采样的方法[14,19]尝试在离散和连续两方面之间建立一个桥梁,但在底层模型的表达性方面仍然相对有限。

1.2 方法引入

在本文中,我们将数据相关和轨迹估计联合起来,作为离散连续能量的最小化,并对其自然领域的各个方面进行了处理。为此,我们建立了Delong等人引入的多模型拟合的最新进展[9]。展示了如何在该框架中制定多目标跟踪,并相应地扩展推理算法。轨迹建模:轨迹由分段多项式建模,分段多项式是用一组闭合形式的目标假设集合来拟合的。数据相关更新:鉴于这些轨迹,考虑到全局的轨迹特性,例如通过单个标签成本移动对象的动态(dynamic)和持久性(persistence),因此数据相关由α-expansion更新。这两个步骤交替进行,以最小化单个离散的目标,这样,轨迹估计可以利用数据相关,反之亦然。(图1

 

1a)无标记的目标检测;b)可能的轨迹假设;c)文中方法标记的所有探测;d)利用加错离散连续方法重新估计的估计。

因此,目前的工作作出如下贡献:(1)制定多目标跟踪,尽量减少统一的离散连续能量;(2)论证了实验成本架构对跟踪问题的适用性;(3)扩展这个方案,考虑问题的细节,轨迹估计优于几何拟合(导致过拟合)。根据我们的知识,本文是第一个采用标签成本进行离散连续优化的方法。正如我们在各种标准数据集上的实验表明的那样,这大大增加了跟踪的准确性,同时保留了执行非贪婪数据相关的好处。

2.相关工作

几十年来,跟踪一直是计算机视觉和其他领域的一个活跃的研究课题。在这篇综述中,我们将重点关注视觉多目标跟踪的最新进展。多目标跟踪方法可分为两类。

第一类,依赖于序列中前面帧的信息,通过递归地方式估计当前状态。虽然早期的卡尔曼滤波方法[21]只是模型的线性目标运动,但最近的基于样本的滤波器,如粒子滤波[6,14],可以处理更复杂的多模态后验。然而,在复杂的情况下,需要精确地近似于后部的粒子增长很快,在实际操作中很难处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值