数论综合(进阶)

前言

之前自行整理的数论讲义存在公式不规范、条理不清楚等问题,这里结合一下各个老师各个书本的讲法,试图系统化这部分内容。

一、莫比乌斯反演

1. O(n) 预处理 \mu

根据莫比乌斯函数 \mu 的定义,有:

n 没有平方项因子时:\mu(n)=(-1)^{k},否则 \mu(n)=0

2. trick:

\mathbf 1 \times \varphi=\mathbf{id}

证明 \Leftarrow

3. O(\sqrt{n}) 计算单个 n 的 \varphi(n) 值

根据公式


4. O(n) 预处理 \varphi1\sim n 中与 n 互质的个数)

根据公式

5. trick
    

\sigma_0(nm)=\sum_{i|n}\sum_{j|m}[\gcd(i,j)=1]

证明 \Leftarrow
    
6. O(n) 预处理 \sigma_01\sim n 中 n 的约数个数)

p 是 x 的 最小 素因子

\sigma_0(x)=2\sigma_0\left(\dfrac{x}{p}\right)-\sigma_0\left(\dfrac{x}{p^2}\right)

证明 \Leftarrow

7. O(n) 预处理 \sigma_1

n=\prod\limits_{i=1}^{k}p_i^{\alpha_i}

\begin{aligned}\sigma_1(n)&=\prod\limits_{i=1}^k\sum\limits_{j=0}^{\alpha_i}p_i^j\\&=\color{red}\sum_{j=0}^{\alpha_1}p_1^{j}\color{black}\times\sum_{j=0}^{\alpha_2}p_2^{j}\times\cdots\times\sum_{j=0}^{\alpha_k}p_k^{j}\\&=\color{red}(p_1^0+p_1^1+\cdots+p_1^{\alpha_1})\color{black}(p_2^0+p_2^1+\cdots+p_2^{\alpha_2})\cdots(p_k^{0}+p_k^{1}+\cdots+p_k^{\alpha_k})\end{aligned}

设:

\begin{aligned}tp(n)&=\color{red}\sum\limits_{j=0}^{\alpha}p_1^j\\&=\color{red}(p_1^0+p_1^1+\cdots+p_1^{\alpha_1})\end{aligned}

则有递推式:(p_1 即 n 的最小素因子)

\begin{aligned}tp(n)&=\begin{cases}tp\left(\dfrac{n}{p_1}\right)\times p_1+1~~~\left(\dfrac{n}{p_1}\mod p_1=0\right)\\p_1+1~~~~~~~~~~~~~~~~~\left(\dfrac{n}{p_1}\mod p_1\ne0\right)\end{cases}\\\sigma_1(n)&=\begin{cases}\dfrac{\sigma_1\left(\dfrac{n}{p_1}\right)}{tp\left(\dfrac{n}{p_1}\right)}\times tp(n)~~~~~~~~~\left(\dfrac{n}{p_1}\mod p_1=0\right)\\\sigma_1\left(\dfrac{n}{p_1}\right)\times(1+p_1)~~~~~\left(\dfrac{n}{p_1}\mod p_1\ne0\right)\end{cases}\end{aligned}

对于素数 p 有:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值