最小生成树__Prim、Kruskal

最小生成树

一个图中可能存在多条相连的边,我们一定可以从一个图中挑出一些边生成一棵树。图中每条边都存在权重时,这时候我们从图中生成一棵树(n - 1 条边)时,生成这棵树的总代价就是每条边的权重相加之和。一个有N个点的图,边一定是大于等于N-1条的。图的最小生成树,就是在这些边中选择N-1条出来,连接所有的N个点。选中的边权之和是所有方案中最小的。

朴素版Prim算法

思路

1.用dist数组保存各个点到集合的距离,初始化所有距离都为正无穷。(该集合就是最小生成树)用st状态数组记录该点是否加入集合。

2.进行n次迭代(因为当前没有点在集合中)

3.每次迭代时找到当前不在集合中,距离集合最近的点t 。

4.用t来更新其它点到集合的距离。

5.直到st数组全为真。(即所有点都加入集合中)

858. Prim算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤500,
1≤m≤10^5,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

#include <bits/stdc++.h>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N], dist[N];  //dist存储每个点到集合的距离
bool st[N];

int prim()
{
    memset(dist, 0x3f, sizeof dist);
    
    int res = 0;
    for (int i = 0; i < n; i ++)
    {
        int t = -1;
        for (int j = 1; j <= n; j ++)
            if (! st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
         
        //若当前距离为INF,则该点与集合不连通,不存在最小生成树       
        if (i && dist[t] == INF) return INF;
        
        //记录每次加入集合的边长(第一次加入时不算,此时距离都为正无穷)
        //这里要放在循环更新各点前,因为若当前点存在负环,则当前点到集合的距离会被更改,记录的值就不正确了
        if (i) res += dist[t];
        
        for (int j = 1; j <= n; j ++)
            dist[j] = min(dist[j], g[t][j]);  //注意区分dijkstra
        
        st[t] = true;
    }
    return res;
}

int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof g);
    
    while (m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    
    int t = prim();
    if (t == INF) puts("impossible");
    else printf("%d", t);
    
    return 0;
}

Kruskal算法

思路

将所有边权重按照从小到大排序(O(mlogm))

枚举每条边a,b 权重为c

若当前a,b不连通,就将这条边加入集合中  (利用并查集)

859. Kruskal算法求最小生成树

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1≤n≤10^5,
1≤m≤2∗10^5,
图中涉及边的边权的绝对值均不超过 1000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6
#include <bits/stdc++.h>

using namespace std;

const int N = 100010, M = 200010;

int n, m;
int res, cnt;
int p[N];  //用于判断a b是否连通

struct Edge {
    int a, b, w;
    
    bool operator< (const Edge &W)const  //重载小于号
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < m; i ++)
        scanf("%d%d%d", &edges[i].a, &edges[i].b, &edges[i].w);
        
    sort(edges, edges + m);
    for (int i = 1; i <= n; i ++) p[i] = i;
    
    for (int i = 0; i < m; i ++)
    {
        auto e = edges[i];
        int a = find(e.a), b = find(e.b), w = e.w;
        if (a != b)
        {
            p[a] = b;
            res += w;
            cnt ++;
        }
    }
    
    if (cnt < n - 1) puts("impossible");
    else cout << res;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值