勿在浮砂筑高台

脚踏实地,让一步一个脚印!

排序:
默认
按更新时间
按访问量

【机器学习详解】线性回归、梯度下降、最小二乘的几何和概率解释

线性回归即线性拟合,给定N个样本数据(x1,y1),(x2,y2)....(xN,yN)(x_1,y_1),(x_2,y_2)....(x_N,y_N)其中xix_i为输入向量,yiy_i表示目标值,即想要预测的值。采用曲线拟合方式,找到最佳的函数曲线来逼近原始数据。通过使得代价函数最小来决定函数...

2016-03-13 22:29:04

阅读数:7495

评论数:0

【数据压缩】JPEG标准与原理解析

为了满足不同应用的需求,JPEG标准包括两种基本的压缩方法:1.基于DCT变换的有损压缩算法;2.基于预测方法的无损压缩算法。基于DCT的基线系统有损压缩技术是到目前为止应用最为广泛的一种压缩方法。 1.基于DCT有损压缩技术    下面是编码器和解码器的流程图,压缩过程:原图分成8×8的子块,分...

2015-12-24 19:26:49

阅读数:8250

评论数:1

【数据压缩】LZW算法原理与源码解析

LZW压缩算法原理非常简单,因而被广泛地采用,已经被引入主流图像文件格式中。该算法由Lempel-Ziv-Welch三人发明,这种技术将定长码字分配给变长信源符号序列,它不需要知道被压缩文件的符号出现概率的先验知识,只需要动态地建立和维护一个字典,和其他压缩算法相比既是缺点也是优点。 1. LZW...

2015-12-17 21:48:48

阅读数:7640

评论数:10

【特征匹配】RANSAC算法原理与源码解析

随机抽样一致性(RANSAC)算法,可以在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。在图像配准以及拼接上得到广泛的应用,本文将对RANSAC算法在OpenCV中角点误匹配对的检测中进行解析。 OpenCV中使用RANSAC算法寻找一个最...

2015-12-08 20:34:33

阅读数:29160

评论数:6

【特征匹配】ORB原理与源码解析

为了满足实时性的要求,前面文章中介绍过快速提取特征点算法Fast,以及特征描述子Brief。本篇文章介绍的ORB算法结合了Fast和Brief的速度优势,并做了改进,且ORB是免费。    Ethan Rublee等人2011年在《ORB:An Efficient Alternative to ...

2015-09-17 16:15:31

阅读数:18313

评论数:16

【特征匹配】BRIEF特征描述子原理及源码解析

传统的特征点描述子如SIFT,SURF描述子,每个特征点采用128维(SIFT)或者64维(SURF)向量去描述,每个维度上占用4字节,SIFT需要128×4=512字节内存,SURF则需要256字节。如果对于内存资源有限的情况下,这种描述子方法显然不适应。同时,在形成描述子的过程中,也比较耗时。...

2015-09-10 09:17:59

阅读数:10028

评论数:3

【特征匹配】Harris及Shi-Tomasi原理及源码解析

本文采用的是opencv2.4.3中的源码。 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/48244255 Harris角点检测    人眼对角点的识别通常是通过一个局部的小窗口内完成的,如果在各个方向上移动这个小窗口,窗口...

2015-09-06 15:03:34

阅读数:7959

评论数:13

简单python爬虫淘宝图片+界面编程+打包成exe

完整代码见文章最后 第一步:编写爬虫代码 import re import urllib.request def getHtml(url='') : page = urllib.request.urlopen(url) html = page.read().decode('GB...

2017-03-21 14:05:22

阅读数:2057

评论数:1

2017网易校招内推笔试题

转载注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/52102841本人笔试的计算机视觉方向,编程题和其他研发岗位类似。 欢迎小伙伴们一起讨论出正确答案。共20个选择题,3个编程题,1个简答题一.选择题1.Linux中...

2016-08-03 15:30:16

阅读数:5274

评论数:1

算法导论--单源最短路径问题(Dijkstra算法)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51918844单源最短路径是指:给定源顶点s∈Vs \in V到分别到其他顶点v∈V−{s}v \in V-\{s\}的最短路径的问题。 Dijkstra算法采用...

2016-07-15 18:41:49

阅读数:4536

评论数:0

算法导论--最小生成树(Kruskal和Prim算法)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点viv_i与vjv_j都有路径相通,则称该无向图为连通图。 强连通图:在有向图中,若任意两个...

2016-07-14 16:58:59

阅读数:33592

评论数:5

算法导论--图的遍历(DFS与BFS)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51897538图的遍历就是从图中的某个顶点出发,按某种方法对图中的所有顶点访问且仅访问一次。为了保证图中的顶点在遍历过程中仅访问一次,要为每一个顶点设置一个访问标志...

2016-07-13 17:41:55

阅读数:4305

评论数:0

算法导论--图的存储(邻接表与邻接矩阵)

图的存储方法有邻接表、邻近矩阵、邻接多重表、十字链表等。本篇文章介绍两种简单且比较常用的两种方法:邻接表与邻接矩阵方法。 以下面的无向图为例,介绍两种存储方法。有向图的存储方法类似,只是边是单方向,无向图的边可以看做双向。 1.邻接链表法邻接链表表示法对图中的每个顶点建立一个带头的边链表;第i...

2016-07-12 15:50:25

阅读数:3810

评论数:0

【机器学习详解】解无约束优化问题:梯度下降、牛顿法、拟牛顿法

无约束优化问题是机器学习中最普遍、最简单的优化问题。 x∗=minx f(x),x∈Rnx^*=min_{x}\ f(x),x\in R^n1.梯度下降梯度下降是最简单的迭代优化算法,每一次迭代需求解一次梯度方向。函数的负梯度方向代表使函数值减小最快的方向。它的思想是沿着函数负梯度方向移动逐步逼...

2016-07-06 20:58:22

阅读数:6188

评论数:0

【机器学习详解】决策树与随机森林算法

决策树决策树模型是一种树形结构,基于特征对实例进行分类或回归的过程。即根据某个特征把数据分划分到若干个子区域(子树),再对子区域递归划分,直到满足某个条件则停止划分并作为叶子节点,不满足条件则继续递归划分。 一个简单的决策树分类模型:红色框出的是特征。 决策树模型学习过程通常包3个步骤:特征选...

2016-07-03 21:16:12

阅读数:5168

评论数:0

【机器学习详解】AdaBoost算法原理

概念AdaBoost是一种级联算法模型,即把几个弱分类器级联到一起去处理同一个分类问题。也就是“三个臭皮匠顶一个诸葛亮”的道理。例如一个专家作出的判定往往没有几个专家一起作出的判定更准确。一种情况:如果每个专家都仅有一票的权利,采用投票机制的方法属于

2016-06-20 20:09:45

阅读数:5651

评论数:0

【机器学习详解】SMO算法剖析

本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。 **1.SMO概念** =========== 上一篇博客已经详细介绍了[SVM原理](http://blog.csdn.net/luosh...

2016-04-27 23:00:27

阅读数:42645

评论数:19

【机器学习详解】SVM解回归问题

在样本数据集(xn,tn)中,tn不是简单的离散值,而是连续值。如在线性回归中,预测房价的问题。与线性回归类似,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面y=wTx+b,采用yn=wTxn+b作为预测值。为了获得稀疏解,即计算超平面参数w,b不依靠所用样本数据,而是部分...

2016-04-12 10:47:09

阅读数:17451

评论数:0

【机器学习详解】SVM解二分类,多分类,及后验概率输出

转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台\color{Blue}{CSDN-勿在浮沙筑高台} 支持向量机(Support Vector Machine)曾经在分类、回...

2016-04-10 22:10:18

阅读数:24007

评论数:6

【机器学习详解】矩阵奇异值分解(SVD)及其应用

PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一...

2016-04-10 09:29:44

阅读数:2741

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭