数据结构-二叉树-二叉树算法设计

注:本题是二叉树顺序存储结构,并且为完全二叉树。

链式存储结构可以查看 数据结构-二叉树的创建(递归)-CSDN博客

Description
根据给定二叉树的顺序存储结点值序列,求出某个结点所在的层数以及该层的结点数。

说明:
输入:
第一行为该二叉树按顺序存储的元素值序列,其中0表示虚结点,大写字母或数字表示结点的值。
第二行为给定结点(需对该结点求其所在层数以及所在层的元素数)

输出:
第一行为指定结点所在层
第二行为指定结点所在层的结点数
Sample Input
A B C 0 E F 0 0 0 G 0 H 0 0 0 0 0 0 0 I 0 0 0 J
H

Sample Output
4
2

Hint
输出有换行
#include <iostream>
#include <bits/stdc++.h>
#define Max_size 105
using namespace std;

typedef struct
{ // 定义存储结构
    char *elem;
    int length;
} BiTree;
void initT(BiTree &T)
{ // 初始化
    T.elem = new char[Max_size];
    T.length = Max_size;
}
void creatT(BiTree &T)
{
    char c, ch;
    int cnt = 1;
    while (cin >> c)
    {
        T.elem[cnt] = c;
        cnt++;
        ch = getchar();
        if (ch == '\n')
            break;
    }
    T.length = cnt - 1;
}
void serch(BiTree T, char c, int &cnt, int &num)
{
    int i, j, k;
    for (i = 1; i <= T.length; i++)
    {
        if (T.elem[i] == c)
        { // 找到关键字符
            for (j = 1; j <= T.length; j++)
            {
                if ((pow(2, j - 1) - 1) < i && (pow(2, j) - 1 >= i))
                { // 判断在第几层
                    cnt = j;
                    for (k = pow(2, j - 1); k <= pow(2, j) - 1; k++)
                    { // 判断这一层有多少个结点
                        if (T.elem[k] != '0')
                            num++;
                    }
                    break;
                }
            }
        }
    }
}
int main()
{
    BiTree T;
    initT(T);
    creatT(T);
    int cnt, num = 0;
    char key;
    cin >> key;
    serch(T, key, cnt, num);
    cout << cnt << "\n"
         << num << "\n";
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值