因为做毕设用到seq2seq框架,网上关于seq2seq的资料很多,但关于seq2seq的代码则比较少,阅读tensorflow的源码则需要跳来跳去比较麻烦(其实就是博主懒)。踩了很多坑后,形成了一些个人的理解,在这里记录下,如果有人恰好路过,欢迎指出错误~
seq2seq图解如下:
上图中,C是encoder输出的最终状态,作为decoder的初始状态;W是encoder的最终输出,作为decoder的初始输入。
具体到tensorflow代码中(tensorflow r1.1.0cpu版本),查阅tf.contrib.rnn.BasicLSTMCell的源码如下:
class BasicLSTMCell(RNNCell):
def __init__(self, num_units, forget_bias=1.0,input_size=None, state_is_tuple=True, activation=tanh,reuse=None):
super(BasicLSTMCell, self).__init__(_reuse=reuse)
if not state_is_tuple:
logging.warn("%s: Using a concatenated state is slower and will soon be deprecated. Use state_is_tuple=True.", self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units) if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def call(self, inputs, state):
"""Long short-term memory cell (LSTM)."""
# Parameters of gates are concatenated into one multiply for efficiency.
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(value=state, num_or_size_splits=2, axis=1)
concat = _linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat([new_c, new_h], 1)
return new_h, new_state
令调用LSTM的命令为:
output,state = tf.contrib.rnn.BasicLSTMCell(input,init_state)
可知,state其实是包含了output在内的。state[0]才是真正的state,即图中的C;state[1]是output,即图中的W。这样一来,最后输出的output其实就显得鸡肋了。(如果要在encode和decode之间搞事情的话,这点就比较重要了。博主就是踩了这个坑。。。当然如果不在这里搞事情的话就可以完美绕过这个坑)
知道这点后,那么接下来的就好理解多了。博主之前曾有过一段时间的疑惑,那就是seq2seq的decode_input到底是什么?如果跟target只是移了一个位,其他完全不变的话,那要encoder干什么?知道了上面的背景后,我们不难知道,教程中decode_input跟target的移位只是加速训练过程。而在具体应用中,decode_input可以是encode的最后一个输出,也可以自己设定一个全零的数组。个人觉得设定全零的数组比较好,因为初始状态就已经包含了encode的最后一个输出了,而且全零数组可以当作是一个开始的标识(至于seq2seq具体的训练过程可视化,可以阅读2017年ACL的一篇文章Visualizing and Understanding Neural Machine Translation http://nlp.csai.tsinghua.edu.cn/~ly/papers/acl2017_dyz.pdf)
最后,还说几点比较零散的:
1、对于短句(<30词),可以不进行输入翻转,模型收敛地稍微慢一点而已;对于长句则最好进行翻转
2、多阅读教程,多实践。上手操作永远是学习的最佳途径