技术博客

技术总结和分享

问题生成(QG)总结

问题生成(QG)总结 (2018.8)   背景:  为什么要研究QG?  从人的经验看,好的学习者一定是擅长提问的。机器知识库作为“学习者”,也许可以利用主动提问来高效构建或者补充知识库,扩充数据集等等。  现在的一些应用场景:在教育领域,帮助学生来提问;在对话领域,作为冷启动来开始一个话...

2019-02-23 20:55:23

阅读数 184

评论数 0

论文阅读 QA与QG联合学习

详细: https://blog.csdn.net/thormas1996/article/details/81081529 https://blog.csdn.net/thormas1996/article/details/81537657 https://blog.csdn.net/ap...

2019-02-13 12:09:55

阅读数 141

评论数 0

《A Survey on Transfer Learning》中文版翻译《迁移学习研究综述》

首先感谢(http://blog.csdn.net/magic_leg/article/details/73957331)这篇博客首次将《A Survey on Transfer Learning》这篇文章翻译成中文版,给予我们很大的参考。 但上述作者翻译的内容有很多不准确的词语、省略了很多内容...

2018-10-19 17:38:48

阅读数 1313

评论数 0

【收藏】各种乘法的区别 “点积、外积、数乘...等”

I've seen several conventions, including ⋅⋅, ∘∘, ∗∗, ⊗⊗, and ⊙⊙. However, most of these have overloaded meanings (see http://en.wikipedia.org/wiki/Li...

2018-09-18 10:39:33

阅读数 246

评论数 0

迁移学习和多任务学习

迁移学习 总结一下,什么时候迁移学习是有意义的?如果你想从任务A学习并迁移一些知识到任务B,那么当任务A和任务B都有同样的输入时,迁移学习是有意义的。在第一个例子中,A和B的输入都是图像,在第二个例子中,两者输入都是音频。当任务A的数据比任务多得多时,迁移学习意义更大。所有这些假设的前提都是,你...

2018-09-04 17:58:34

阅读数 386

评论数 0

【ICML2018见闻】 迁移学习、多任务学习领域的进展

【导读】如今 ICML(International Conference on Machine Learning,国际机器学习大会)已经成为有巨大影响力的会议,每年都会为我们带来很多关于机器学习趋势与发展方向等有意义的分享。今年的 ICML 有三个讨论会都重点讨论了迁移学习和多任务学习。 本文的...

2018-09-04 17:57:07

阅读数 975

评论数 0

论文复现|pointer-generator

论文代码链接:https://github.com/becxer/pointer-generator/ 一、数据(cnn,dailymail) 数据处理(代码链接):https://github.com/becxer/cnn-dailymail/ 把数据集处理成二进制形式 1、下载数据 ...

2018-07-30 12:54:16

阅读数 1039

评论数 0

Tensorflow 国内镜像源 [安装]

今天安装Tensorflow,找到清华大学开源软件镜像站,直接替换域名即可,下载安装超快速,不要太开心~~~地址:https://mirrors.tuna.tsinghua.edu.cn/help/tensorflow/还可以选择版本,自动生成安装命令,服务很贴心!建议使用 anacoda方式安装...

2018-07-09 14:18:18

阅读数 10612

评论数 4

基本概念和Demo集合(一)

https://blog.csdn.net/aaronjny/article/details/79677457

2018-06-21 09:56:55

阅读数 142

评论数 0

经典的把一篇英文文章转成word2id形式的dict的一段python程序

import collections import tensorflow as tf def _read_words(filename): with tf.gfile.GFile(filename, "r") as f: return f.re...

2018-06-21 09:32:31

阅读数 223

评论数 0

统计SQuAD的词汇得到word2id 并把词都转成id的python代码

import json import collections json_file = open("train-v1.1.json") data = json.load(json_file) all_words = [] for paragraphs_tit...

2018-06-21 09:31:09

阅读数 443

评论数 0

解读阿里iDST SLQA 技术-机器阅读理解

机器阅读理解的评测维度分为 EM(Exact Match,精准匹配分数)和 F1(精确率和召回率的平均,模糊匹配分数)。下图可见,阿里巴巴在 F1 分数上略胜一筹,微软的 EM 分数优于阿里巴巴。无论如何,我们可以欣喜地看到包括阿里,微软亚洲研究院,腾讯,哈工大和讯飞等中国的研究人员走在了世界的前...

2018-06-20 05:53:56

阅读数 788

评论数 0

Word Embedding的通俗解释

Word Embedding是NLP中最频繁出现的词了,关于word embedding,其实很简单。word embedding的意思是:给出一个文档,文档就是一个单词序列比如 “A B A C B F G”, 希望对文档中每个不同的单词都得到一个对应的向量(往往...

2018-06-14 12:11:35

阅读数 596

评论数 0

[NLP论文阅读]Learned in Translation: Contextualized Word Vectors

论文原文:Learned in Translation: Contextualized Word Vectors题外话前段时间一直在写自己的论文,目前论文基本成型,又要转入新一阶段的论文阅读了。由于对GAN等技术不是很了解,所以在挑选论文的时候有选择的避开了和这些技术有关的内容。由于之前一直在学习...

2018-06-14 12:06:29

阅读数 247

评论数 0

阅读《Learning to Ask: Neural Question Generation for Reading Comprehension 》

阅读《Learning to Ask: Neural Question Generation for Reading Comprehension 》@(NLP)[自然语言生成|LSTM|QA|Attention]Abstract作者为解决机器生成问题,提出了一种基于注意力的序列学习模型并研究了句子...

2018-06-12 06:52:15

阅读数 211

评论数 0

动态记忆网络

原文 Ask Me Anything: Dynamic Memory Networks for Natural Language Processing简介Question answering 是自然语言处理领域的一个复杂问题. 它需要对文本的理解力和推理能力. 大部分 NLP 问题都可以转化为一个...

2018-06-12 06:52:06

阅读数 173

评论数 0

基于Bidirectional AttentionFlow的机器阅读理解实践【demo】【code】

机器阅读是实现机器认知智能的重要技术之一。机器阅读任务主要有两大类:完形填空和阅读理解。(1)完型填空类型的问答,简单来说就是一个匹配问题。问题的求解思路基本是:  1) 获取文档中词的表示  2) 获取问题的表示  3) 计算文档中词和问题的匹配得分,选出最优(2...

2018-06-12 06:51:55

阅读数 945

评论数 0

Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering

AbstractAuthors present the gated self-matching networks for reading comprehension style question answering, which aims to answer questions from a gi...

2018-06-11 21:17:19

阅读数 220

评论数 0

End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension

来源arXiv 2016.10.31问题当前的 RC 模型都是生成单个实体或者单个词,不能够根据问题动态生成答案。基于此,本文提出了 end2end 的 chunk 抽取神经网络。文章思路Dynamic Chunk Reader 这一模型分成四步:encode layer 分别使用 bi-GRU ...

2018-06-11 21:13:32

阅读数 93

评论数 0

DrQA实践

2017年七月份Facebook开源了其开放域问答系统DrQA的代码。关于DrQA,还有一篇2017年发表在ACL上的论文《Reading Wikipedia to Answer Open-Domain Questions》,在此首先介绍一下论文的原理。    DrQA模型主要分为两部分,第一部分...

2018-06-11 21:10:01

阅读数 103

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭