POJ ~ 1011 ~ Sticks(DFS+剪枝)

题意:乔治取了一些长度相同的木棍,他把这些木棍进行了随机切割。他忘了原来的木棍的长度,让你帮他计算这些木棍的最小的可能的原始长度。

思路:DFS。从最小的木棍长度尝试每一个可能长度,对于每一个可能的值进行深搜如果哪一个能够成功就是答案。dfs怎么写呢。

①我们应该先确定这样一个道理:越短的木棍的灵活度越大,越长的木棍的灵活度越差。所以我们对木棍排个序然后依次从最长的木棍到最短的木棍进行组合,用过的就标记。

②深搜参数,需要传三个值,k组合好的木棍个数,pos组合到的位置 ,l已经组成的长度

③深搜过程,如果当前最长的木棍加上之前组合好的那些组不成len,那么就返回上一层深搜更换木棍。

④如果第一个长度为x的木棍组合不成功那么后面的长度为x也不可能组合成功,直接跳过。这个剪枝很强!!!


//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int INF=1;
const int maxn=65;
int n,a[65],sum,len;
bool v[65];
bool cmp(const int a,const int b)
{
	return a>b;
}
bool dfs(int k,int l,int pos)//k组合好的个数  pos组合到的位置 l已经组成的长度 
{
	if(k==sum/len)	return true;
	for(int i=pos+1;i<n;i++)
	{
		if(v[i]) continue;
		if(l+a[i]==len)
		{
			v[i]=1;
			if(dfs(k+1,0,-1))	return true;
			v[i]=0;
			return false;
		}
		else if(l+a[i]<len) 
		{
			v[i]=1;
			if(dfs(k,l+a[i],i))	return true;
			v[i]=0;
			if(l==0) return false;
			while(a[i]==a[i+1]) i++;
		}
	}
	return false;
}
int main()
{
	while(~scanf("%d",&n)&&n)
	{
		sum=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);sum=sum+a[i];
		}
		sort(a,a+n,cmp);
		for(len=a[0];len<=sum;len++)
		{
			if(sum%len==0)
			{
				memset(v,0,sizeof(v));
				if(dfs(1,0,-1))
				{
					printf("%d\n",len);break;
				}
			}
		}
	}
	return 0; 
}


POJ 1321 排兵布阵问题可以使用 DFS 算法求解。 题目要求在一个 n x n 的棋盘上,放置 k 个棋子,其中每行、每列都最多只能有一个棋子。我们可以使用 DFS 枚举每个棋子的位置,对于每个棋子,尝试将其放置在每一行中未被占用的位置上,直到放置了 k 个棋子。在 DFS 的过程中,需要记录每行和每列是否已经有棋子,以便在尝试放置下一个棋子时进行判断。 以下是基本的 DFS 模板代码: ```python def dfs(row, cnt): global ans if cnt == k: ans += 1 return for i in range(row, n): for j in range(n): if row_used[i] or col_used[j] or board[i][j] == '.': continue row_used[i] = col_used[j] = True dfs(i + 1, cnt + 1) row_used[i] = col_used[j] = False n, k = map(int, input().split()) board = [input() for _ in range(n)] row_used = [False] * n col_used = [False] * n ans = 0 dfs(0, 0) print(ans) ``` 其中,row 代表当前尝试放置棋子的行数,cnt 代表已经放置的棋子数量。row_used 和 col_used 分别表示每行和每列是否已经有棋子,board 则表示棋盘的状态。在尝试放置棋子时,需要排除掉无法放置的位置,即已经有棋子的行和列,以及棋盘上标记为 '.' 的位置。当放置了 k 个棋子时,即可计数一次方案数。注意,在回溯时需要将之前标记为已使用的行和列重新标记为未使用。 需要注意的是,在 Python 中,递归深度的默认限制为 1000,可能无法通过本题。可以通过以下代码来解除限制: ```python import sys sys.setrecursionlimit(100000) ``` 完整代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值