POJ ~ 1201 ~ Intervals (差分约束 + SPFA最长路)

题意:给定n(n <= 50000)个整点闭区间和这个区间中至少有多少整点需要被选中,每个区间的范围为[ai, bi],并且至少有ci个点需要被选中,其中0 <= ai <= bi <= 50000,问[0, 50000]至少需要有多少点被选中。

例如3 6 2 表示[3, 6]这个区间至少需要选择2个点,可以是3,4也可以是4,6(总情况有 C(4, 2)种 )。

思路:这类问题就没有线性约束那么明显,需要将问题进行一下转化,考虑到最后需要求的是一个完整区间内至少有多少点被选中,试着用d[i]表示[0, i]这个区间至少有多少点能被选中,根据定义,可以抽象出 d[-1] = 0,对于每个区间描述,可以表示成d[ bi ]  - d[ ai - 1 ] >= ci,而我们的目标要求的是 d[ 50000 ] - d[ -1 ] >= T 这个不等式中的T,将所有区间描述转化成图后求-1到50000的最长路。

这里忽略了一些要素,因为d[i]描述了一个求和函数,所以对于d[i]和d[i-1]其实是有自身限制的,考虑到每个点有选和不选两种状态,所以d[i]和d[i-1]需要满足以下不等式:  0 <= d[i+1] - d[i] <= 1   (即第i个数选还是不选)

这样一来,还需要加入 50000*2 = 100000 条边,由于边数和点数都是万级别的,所以不能采用单纯的Bellman-Ford ,需要利用SPFA进行优化,由于-1不能映射到小标,所以可以将所有点都向x轴正方向偏移1个单位(即所有数+1)。

以上内容来自:夜深人静学算法,因为是例题,所以我直接把解释拉了过来。侵删!


//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 5e4 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, dist;       //起点,终点,距离
    Edge(int u, int v, int w):from(u), to(v), dist(w) {}
};

struct SPFA
{
    int n, m;                      //结点数,边数(包括反向弧)
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    bool vis[MAXN];                //是否在队列中
    int d[MAXN];                   //Bellman-Ford
    int p[MAXN];                   //上一条弧
    int cnt[MAXN];                 //进队次数

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }
    void add_edge(int from, int to, int dist)
    {
        edges.push_back(Edge(from, to, dist));
        m = edges.size();
        G[from].push_back(m - 1);
    }

    bool spfa(int s)
    {
        for (int i = 0; i <= n; i++) d[i] = -INF;
        memset(vis, 0, sizeof(vis));
        memset(cnt, 0, sizeof(cnt));
        d[s] = 0; vis[s] = true;

        queue<int> Q;
        Q.push(s);
        while (!Q.empty())
        {
            int u = Q.front(); Q.pop();
            vis[u] = false;
            for (int i = 0; i < G[u].size(); i++)
            {
                Edge& e = edges[G[u][i]];
                if (d[e.to] < d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = G[u][i];
                    if (!vis[e.to])
                    {
                        Q.push(e.to); vis[e.to] = true;
                        if (++cnt[e.to] > n) return false;//有负环
                    }
                }
            }
        }
        return true;//没有负环
    }
};
SPFA solve;
int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        int MIN = INF, MAX = -1;
        solve.init(50005);
        while (n--)
        {
            int a, b, c;
            scanf("%d%d%d", &a, &b, &c); a--;
            solve.add_edge(a, b, c);
            MIN = min(MIN, a);
            MAX = max(MAX, b);
        }
        for(int i = MIN; i < MAX; i++)
        {
            solve.add_edge(i, i+1, 0);
            solve.add_edge(i+1, i, -1);
        }
        solve.spfa(MIN);
        printf("%d\n", solve.d[MAX]);
    }
    return 0;
}
/*
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值