POJ ~ 2083 ~ Fractal (DFS打印图形)

题意:给你一个N,你打印出一个图形,当n=-1时结束,图形规律为

n为1时图形为‘X’

n>=2时图形为呈如下规律

B(n - 1)        B(n - 1)

        B(n - 1)

B(n - 1)        B(n - 1)

思路:我们先开一个二维数组,把所有位置置为空格,然后把该有X的地方置为X就可以了。我们可以发现图形为正方形

n=1时,图形大小为1*1

n=2时,图形大小为3*3

n=3时,图形大小为9*9

n=n时,图形大小为(3^(n-1))*(3^(n-1))

我们进行递归打印,明显n=1的时候为递归结束条件。

n阶图形的左上角坐标为(x,y)时:

n-1阶图形的大小为(3^(n-2))*(3^(n-2)),记为Size

左上角的n-1阶图形的左上角坐标为(x,y),

右上角的n-1阶图形的左上角坐标为(x,y+Size*2),

中    间的n-1阶图形的左上角坐标为(x+Size,y+Size)

左下角的n-1阶图形的左上角坐标为(x+Size*2,y),

右下角的n-1阶图形的左上角坐标为(x+Size*2,y+Size*2)。


//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN = 1005;
char a[MAXN][MAXN];
void draw(int x, int y, int n)
{
    if (n == 1) { a[x][y] = 'X'; return ; }
    int Size = pow(3.0, n-2);//n-1阶图形大小
    draw(x,        y,        n-1);//左上
    draw(x,        y+Size*2, n-1);//右上
    draw(x+Size,   y+Size,   n-1);//中
    draw(x+Size*2, y,        n-1);//左下
    draw(x+Size*2, y+Size*2, n-1);//右下

}
int main()
{
    //freopen("C:\\Users\\张松超\\Desktop\\out.txt", "w", stdout);
    int n;
    while (~scanf("%d", &n) && n != -1)
    {
        memset(a, ' ', sizeof(a));
        draw(0, 0, n);
        n = pow(3, n-1);
        for (int i = 0; i < n; i++)
        {
            a[i][n] = '\0';
            puts(a[i]);
        }
        printf("-\n");
    }
    return 0;
}
/*
1
2
3
4
-1
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值