题意:给你一个N,你打印出一个图形,当n=-1时结束,图形规律为
n为1时图形为‘X’
n>=2时图形为呈如下规律
B(n - 1) B(n - 1) B(n - 1) B(n - 1) B(n - 1)
思路:我们先开一个二维数组,把所有位置置为空格,然后把该有X的地方置为X就可以了。我们可以发现图形为正方形
n=1时,图形大小为1*1
n=2时,图形大小为3*3
n=3时,图形大小为9*9
n=n时,图形大小为(3^(n-1))*(3^(n-1))
我们进行递归打印,明显n=1的时候为递归结束条件。
n阶图形的左上角坐标为(x,y)时:
n-1阶图形的大小为(3^(n-2))*(3^(n-2)),记为Size
左上角的n-1阶图形的左上角坐标为(x,y),
右上角的n-1阶图形的左上角坐标为(x,y+Size*2),
中 间的n-1阶图形的左上角坐标为(x+Size,y+Size)
左下角的n-1阶图形的左上角坐标为(x+Size*2,y),
右下角的n-1阶图形的左上角坐标为(x+Size*2,y+Size*2)。
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN = 1005;
char a[MAXN][MAXN];
void draw(int x, int y, int n)
{
if (n == 1) { a[x][y] = 'X'; return ; }
int Size = pow(3.0, n-2);//n-1阶图形大小
draw(x, y, n-1);//左上
draw(x, y+Size*2, n-1);//右上
draw(x+Size, y+Size, n-1);//中
draw(x+Size*2, y, n-1);//左下
draw(x+Size*2, y+Size*2, n-1);//右下
}
int main()
{
//freopen("C:\\Users\\张松超\\Desktop\\out.txt", "w", stdout);
int n;
while (~scanf("%d", &n) && n != -1)
{
memset(a, ' ', sizeof(a));
draw(0, 0, n);
n = pow(3, n-1);
for (int i = 0; i < n; i++)
{
a[i][n] = '\0';
puts(a[i]);
}
printf("-\n");
}
return 0;
}
/*
1
2
3
4
-1
*/