POJ 2083 分形

题意

传送门 POJ 2083

题解

n n n 级分形图规模为 3 n − 1 3^{n-1} 3n1,由 5 5 5 n − 1 n-1 n1 级分形图组成。设 l = 3 n − 2 l=3^{n-2} l=3n2,子分形图顶点坐标分别为 ( 0 , 0 ) , ( 0 , 2 l ) , ( l , l ) , ( 2 l , 0 ) , ( 2 l , 2 l ) (0,0),(0,2l),(l,l),(2l,0),(2l,2l) (0,0),(0,2l),(l,l),(2l,0),(2l,2l),递归求解即可。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 750
char obj[maxn][maxn];

int qpow(int x, int n)
{
    int res = 1;
    while (n)
    {
        if (n & 1)
            res *= x;
        x *= x, n >>= 1;
    }
    return res;
}

void blk(int x, int y, int l)
{
    for (int i = x; i < x + l; ++i)
        for (int j = y; j < y + l; ++j)
            obj[i][j] = ' ';
}

void solve(int x, int y, int l)
{
    if (l == 1)
    {
        obj[x][y] = 'X';
        return;
    }
    l /= 3;
    solve(x, y, l), blk(x, y + l, l), solve(x, y + 2 * l, l);
    blk(x + l, y, l), solve(x + l, y + l, l), blk(x + l, y + 2 * l, l);
    solve(x + 2 * l, y, l), blk(x + 2 * l, y + l, l), solve(x + 2 * l, y + 2 * l, l);
}

int main()
{
    int n;
    while (~scanf("%d", &n) && n != -1)
    {
        int l = qpow(3, n - 1);
        solve(0, 0, l);
        for (int i = 0; i < l; ++i)
        {
            for (int j = 0; j < l; ++j)
                putchar(obj[i][j]);
            putchar('\n');
        }
        puts("-");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值