POJ ~ 3666 ~ Making the Grade (DP + 离散化)

题意:给你一个长度为n(n<=2000)序列,问将其变成单调不递增或单调不递减的序列的最小改动的值为多少?

思路:两种单调性情况,求得一种,把数组反序再求一遍另一种就好了。可以想得到DP,我们就一步步往下考虑。
首先定义状态 dp[i][j] d p [ i ] [ j ] 表示前 i i 个数字以 j 这个数字结尾的时候的答案。
不难想到状态转移方程 dp[i][j]=min(dp[i1][k])+abs(ja[i]),(1in)(0kj)(0j1e9) d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ k ] ) + a b s ( j − a [ i ] ) , ( 1 ≤ i ≤ n ) ( 0 ≤ k ≤ j ) ( 0 ≤ j ≤ 1 e 9 ) 其中 a 是题目中给的数列,答案为 min(dp[n][j]),(0j1e9) m i n ( d p [ n ] [ j ] ) , ( 0 ≤ j ≤ 1 e 9 )
j j 太大了想办法搞一下,因为 n 很小只有2000,任何时候 j j 的最优情况只可能是 a 数组中的数字。因为对于原序列的某个数字,一定要变成该序列中的某个数字,才是最优解。(好像是废话…)。那么 j 的取值范围就大大的缩小了,变为原序列中的某个数字,只有2000个,因为求解的时候我们需要 kj k ≤ j ,所以我们把这个 j j 的取值搞到一个新的数组 b 中,进行排序,其实这里就是对 j j 离散化了一下。
所以,dp方程变为:dp[i][j]=min(dp[i1][k])+abs(b[j]a[i]),(1kj)(1jn)
我们现在发现仍然需要3重for,复杂度为 n3 n 3 会超时,我们不妨先把这个想法敲一下,然后看哪里能优化。

超时版!!!:

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 2005;
const int INF = 0x3f3f3f3f;
int n, a[MAXN], b[MAXN], dp[MAXN][MAXN];
int work()
{
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            int MIN = INF;
            for (int k = 1; k <= j; k++)
            {
                MIN = min(MIN, dp[i-1][k]);
            }
            dp[i][j] = MIN + abs(a[i]-b[j]);
        }
    }
    int ans = INF;
    for (int i = 1; i <= n; i++) ans = min(ans, dp[n][i]);
    return ans;
}
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    sort(b+1, b+1+n);
    int ans = INF;
    ans = min(ans, work());
    reverse(b+1, b+1+n);//翻转再求
    ans = min(ans, work());
    printf("%d\n", ans);
    return 0;
}

/*
7
1 3 2 4 5 3 9
*/

我们发现好像最内层的for循环没起到很大的作用,只是求了一个最小值,且 k 是随着 j 在变化的,j 增加1,k就要从1 遍历到 j ,然而我们之前都求过1~(j-1)的最小值了只差跟 dp[i1][j] d p [ i − 1 ] [ j ] 的比较一下。我们其实完全可以用一个变量MIN维护 min(dp[i1][k])(1kj) m i n ( d p [ i − 1 ] [ k ] ) ( 1 ≤ k ≤ j ) 这个值,将 k 和 j 的循环融合到一起。
这样就完全OK了,复杂度为 n2 n 2 ,空间复杂度为 n2 n 2
AC代码:

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 2005;
const int INF = 0x3f3f3f3f;
int n, a[MAXN], b[MAXN], dp[MAXN][MAXN];
int work()
{
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= n; i++)
    {
        int MIN = INF;
        for (int j = 1; j <= n; j++)
        {
            MIN = min(MIN, dp[i-1][j]);
            dp[i][j] = abs(a[i]-b[j])+MIN;
        }
    }
    int ans = INF;
    for (int i = 1; i <= n; i++) ans = min(ans, dp[n][i]);
    return ans;
}
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    sort(b+1, b+1+n);
    int ans = INF;
    ans = min(ans, work());
    reverse(b+1, b+1+n);
    ans = min(ans, work());
    printf("%d\n", ans);
    return 0;
}

/*
7
1 3 2 4 5 3 9
*/

虽然已经AC了,但是还能在优化,每次dp[i][j]的状态只和dp[i-1][j] 有关,我们可以用滚动数组优化一下空间,将空间复杂度变为 n n <script type="math/tex" id="MathJax-Element-19">n</script>
AC代码

//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 2005;
const int INF = 0x3f3f3f3f;
int n, a[MAXN], b[MAXN], dp[2][MAXN];
int work()
{
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= n; i++)
    {
        int MIN = INF;
        for (int j = 1; j <= n; j++)
        {
            MIN = min(MIN, dp[(i-1)%2][j]);
            dp[i%2][j] = abs(a[i]-b[j])+MIN;
        }
    }
    int ans = INF;
    for (int i = 1; i <= n; i++) ans = min(ans, dp[n%2][i]);
    return ans;
}
int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        b[i] = a[i];
    }
    sort(b+1, b+1+n);
    int ans = INF;
    ans = min(ans, work());
    reverse(b+1, b+1+n);
    ans = min(ans, work());
    printf("%d\n", ans);
    return 0;
}

/*
7
1 3 2 4 5 3 9
*/
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值