//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
int from, to, cap, flow; //起点,终点,容量,流量
Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
int n, m, s, t; //结点数,边数(包括反向弧),源点s,汇点t
vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
vector<int> G[MAXN]; //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
int d[MAXN]; //从起点到i的距离(层数差)
int cur[MAXN]; //当前弧下标
bool vis[MAXN]; //BFS分层使用
void init(int n)
{
this->n = n;
edges.clear();
for (int i = 0; i <= n; i++) G[i].clear();
}
void AddEdge(int from, int to, int cap)
{
edges.push_back(Edge(from, to, cap, 0));
edges.push_back(Edge(to, from, 0, 0));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BFS()//构造分层网络
{
memset(vis, 0, sizeof(vis));
queue<int> Q;
d[s] = 0;
vis[s] = true;
Q.push(s);
while (!Q.empty())
{
int x = Q.front(); Q.pop();
for (int i = 0; i < G[x].size(); i++)
{
Edge& e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = true;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a)//沿阻塞流增广
{
if (x == t || a == 0) return a;
int flow = 0, f;
for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
{
Edge& e = edges[G[x][i]];
if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
{
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int MaxFlow(int s, int t)
{
this->s = s; this->t = t;
int flow = 0;
while (BFS())
{
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
}solve;
int n, m, down[MAXN], up, sum[MAXN];
int main()
{
while (~scanf("%d%d", &n, &m))
{
int tot = 0;
memset(sum, 0, sizeof(sum));
int vs = 0, vt = n+m+1;
solve.init(vt);
int cur = solve.edges.size();//cur记录需要输出边的起点
for (int i = 0; i < m; i++)
{
int u, v; scanf("%d%d%d%d", &u, &v, &down[i], &up);
solve.AddEdge(u, v, up-down[i]);
sum[u] -= down[i];
sum[v] += down[i];
}
for (int i = 0; i <= vt; i++)
{
if (sum[i] < 0) solve.AddEdge(i, vt, -sum[i]);
else solve.AddEdge(vs, i, sum[i]), tot += sum[i];
}
int MF = solve.MaxFlow(vs, vt);//可行流
if (MF != tot) printf("NO\n");
else
{
printf("YES\n");
for (int i = cur, j = 0; i < cur+m*2; i += 2, j++)
{
printf("%d\n", solve.edges[i].flow+down[j]);
}
}
}
return 0;
}
/*
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
*/