HDU ~ 4738 ~ Caocao's Bridges (桥)

题意

输入N,M,然后输入M条边(u,v,w)表示u-v有一条边权为w的无向边,求w最小的桥,输出w。如果不存在桥输出-1,图不连通输出0。

思路

模板题?就是有两个坑点,①有重边,(重边不算桥)②图不连通输出0

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e3 + 5;
const int MAXM = 1e6 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, w;
    Edge (int from, int to, int w): from(from), to(to), w(w) {}
};
struct EdgeBCC//边双联通分量
{
    //有重边也算桥的时候,记得先去重再加边!!!
    int n, m;
    int LOW[MAXN], DFN[MAXN], bccno[MAXN], dfs_clock, bcc_cnt;
    bool isbridge[MAXM];
    vector<Edge> edges, bridge;
    vector<int> G[MAXN];
    void init(int n)
    {
        this->n = n, m = 0;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }
    void AddEdge (int from, int to, int w)
    { 
        edges.push_back(Edge(from, to, w));
        edges.push_back(Edge(to, from, w));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    int dfs(int u, int fa)
    {
        int lowu = DFN[u] = ++dfs_clock;
        int child = 0;
        bool flag = false;
        for (int i = 0; i < G[u].size(); i++)
        {
            Edge& e = edges[G[u][i]];
            int v = e.to;
            if (v == fa && !flag) { flag = true; continue; }
            if (!DFN[v]) //没有访问过v
            {
                child++;
                int lowv = dfs(v, u);
                lowu = min(lowu, lowv); //用后代的low函数更新自己
                if (lowv > DFN[u])//桥
                {
                    bridge.push_back(e);
                    isbridge[G[u][i]] = isbridge[G[u][i]^1] = true;
                }
            }
            else if (DFN[v] < DFN[u])
                lowu = min(lowu, DFN[v]); //用反向边更新自己        
        }
        LOW[u] = lowu;
        return lowu;
    }
    void dfs2(int u)
    {
        bccno[u] = bcc_cnt;
        for(int i = 0; i < G[u].size(); i++)
        {
            Edge e = edges[G[u][i]];
            if(!isbridge[G[u][i]] && !bccno[e.to])
                dfs2(e.to);
        }
    }
    int find_bcc()
    {
        memset(DFN, 0, sizeof(DFN)), memset(LOW, 0, sizeof(LOW));
        bridge.clear(), memset(bccno, 0, sizeof(bccno));
        dfs_clock = bcc_cnt = 0;
        int cnt = 0;
        for (int i = 0; i < n; i++)
            if (!DFN[i]) cnt++, dfs(i, -1);
        for(int i = 0; i < n; i++)
            if(!bccno[i]) bcc_cnt++, dfs2(i);
        return cnt>1?-1:0;
    }

}gao;

int n, m;
int main()
{
    while (~scanf("%d%d", &n, &m) && (n+m))
    {
        gao.init(n);
        while (m--)
        {
            int u, v, w; scanf("%d%d%d", &u, &v, &w);
            u--, v--;
            gao.AddEdge(u, v, w);
        }
        if (gao.find_bcc() == -1) { printf("0\n"); continue; }
        int ans = INF;
        for (auto& i: gao.bridge) ans = min(ans, i.w);
        if (ans == 0) ans = 1;
        if (ans == INF) ans = -1;
        printf("%d\n", ans);
    }   
    return 0;
}
/*
3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值