题目概述
给出
n
个点,
ps:这题有毒,当边权为
0
的时候要输出
解题报告
桥连接着两个边双联通分量,删去桥时整个图的连通块数会增加。
求桥有两种方法:1.求出边双,不在边双中的就是桥。2.一条边
只求桥的时候采用后者较为方便。
示例程序
因为只有一个连通块……所以就不用开栈啦QwQ!
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1000,maxm=2000000,INF=1e9;
int n,m,ans;
int E,lnk[maxn+5],nxt[maxm+5],son[maxm+5],w[maxm+5];
int ti,dfn[maxn+5],low[maxn+5];
#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline char readc()
{
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
if (l==r) return EOF;return *l++;
}
inline int readi(int &x)
{
int tot=0,f=1;char ch=readc(),lst='+';
while (!isdigit(ch)) {if (ch==EOF) return EOF;lst=ch;ch=readc();}
if (lst=='-') f=-f;
while (isdigit(ch)) tot=(tot<<3)+(tot<<1)+ch-48,ch=readc();
return x=tot*f,Eoln(ch);
}
#define Add(x,y,z) son[E]=(y),w[E]=(z),nxt[E]=lnk[x],lnk[x]=E++
void Tarjan(int x,int pre=-1)
{
dfn[x]=low[x]=++ti;
for (int j=lnk[x];~j;j=nxt[j]) if (j!=pre)
{
if (!dfn[son[j]]) Tarjan(son[j],j^1),low[x]=min(low[x],low[son[j]]); else
low[x]=min(low[x],dfn[son[j]]);if (dfn[x]<low[son[j]]) ans=min(ans,w[j]);
}
}
int main()
{
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
for (readi(n),readi(m);n||m;readi(n),readi(m))
{
E=0;memset(lnk,255,sizeof(lnk));
for (int i=1,x,y,z;i<=m;i++) readi(x),readi(y),readi(z),Add(x,y,z),Add(y,x,z);
memset(dfn,0,sizeof(dfn));ans=INF;Tarjan(1);
for (int i=1;i<=n;i++) if (!dfn[i]) goto OrzZH;
if (ans==INF) goto OrzJZ;if (!ans) ans=1;goto OrzFQY;
OrzZH:puts("0");continue;
OrzJZ:puts("-1");continue;
OrzFQY:printf("%d\n",ans);
}
return 0;
}