HDU ~ 4745 ~ Two Rabbits (区间DP,环形序列的最长回文子序列)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/84989839

在这里插入图片描述

题意

有两只兔子和一个N块石头组成的环,他们在这个环跳,A顺时针跳,B逆时针跳,有一个要求他们两个每时每刻必须站在相同质量的石头上,跳过的石头不能再跳,两个人的起点任意(可以相同),求两只兔子步数之和的最大值?

思路

问题就相当于:环形序列的最长回文子序列。环形序列,其实我们把原串往后复制一段就OK了。
dp[i][j]dp[i][j]表示[i,j][i,j]区间的最优解,状态转移方程为:
s[i]!=s[j]s[i]!=s[j]dp[i][j]=max(dp[i+1][j],dp[i][j1])dp[i][j] = max(dp[i+1][j],dp[i][j-1])
s[i]==s[j]s[i]==s[j]dp[i][j]=dp[i+1][j1]+2dp[i][j] = dp[i+1][j-1]+2
注意:起点可以一样

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e3 + 5;
int n, a[MAXN], dp[MAXN][MAXN];
int main()
{
    while (~scanf("%d", &n) && n)
    {
        for (int i = 0; i < n; i++) scanf("%d", &a[i]), a[i + n] = a[i];
        memset(dp, 0, sizeof(dp));
        for (int i = 0; i < 2 * n; i++) dp[i][i] = 1;
        for (int len = 2; len <= n; len++)
        {
            for (int i = 0; i + len - 1 < 2 * n; i++)
            {
                int j = i + len - 1;
                if (a[i] == a[j]) dp[i][j] = dp[i + 1][j - 1] + 2;
                else dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
            }
        }
        int ans = 0;
        for (int i = 0; i < n; i++) 
        {
            ans = max(ans, dp[i][i + n - 1]);
            ans = max(ans, dp[i][i + n - 2] + 1);
        }
        printf("%d\n", ans);
    }
    return 0;
}  
/*
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
*/

没有更多推荐了,返回首页