题目大意:
两只兔子,在n块围成一个环形的石头上跳跃,每块石头有一个权值ai,一只从左往右跳,一只从右往左跳,每跳一次,两只兔子所在的石头的权值都要相等,在一圈内(各自不能超过各自的起点,也不能再次回到起点)它们最多能经过多少个石头(1 <= n <= 1000, 1 <= ai <= 1000)。
解题思路:
其实就是求一个环中,非连续最长回文子序列的长度。
dp[i][j] = max{ dp[i + 1][j], d[i][j - 1], (if a[i] == a[j]) dp[i + 1][j - 1] + 2 }
但是,这个dp公式仅仅是求出一个序列的非连续最长回文子序列,题目的序列是环状的。
直接当成一个链求dp,然后把链切成两半,求出两边的回文长度,最大的和就是解。这里不用考虑起点问题,因为两边的回文中点都可以做起点,另一个即为对称中心。
如211213就可看做2112并上1(或3)两段回文,一个兔子走1、2(第二个)、1、1、2(第一个),另一个走1、2(第一个)、1、1、2(第二个)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#define ll long long
using namespace std;
int getint()
{
int i=0,f=1;char c;
for(c=getchar();(c<'0'||c>'9')&&c!='-';c=getchar());
if(c=='-')f=-1,c=getchar();
for(;c>='0'&&c<='9';c=getchar())i=(i<<3)+(i<<1)+c-'0';
return i*f;
}
const int N=1005;
int n,ans;
int a[N],f[N][N];
int main()
{
//freopen("lx.in","r",stdin);
while(1)
{
n=getint();
if(!n)break;
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)a[i]=getint();
for(int i=n;i;i--)
for(int j=i;j<=n;j++)
{
if(i==j)f[i][j]=1;
else
{
f[i][j]=max(f[i+1][j],f[i][j-1]);
if(a[i]==a[j])f[i][j]=max(f[i][j],f[i+1][j-1]+2);
}
}
ans=f[1][n];
for(int i=1;i<n;i++)
ans=max(ans,f[1][i]+f[i+1][n]);
cout<<ans<<'\n';
}
return 0;
}