codeup 问题D:八皇后

题目入口

题目跳转

题目描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 *8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

输入

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

输出

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

样例输入

3
6
4
25

样例输出

25713864
17582463
36824175

随心写

八皇后问题和全排列问题都是很有代表性的递归问题,很有必要去将其一部部的弄懂,这样会对理解递归的过程很有帮助

代码

/*
http://codeup.hustoj.com/problem.php?cid=100000583&pid=3
*/
#include<iostream>
#include<vector>

using namespace std;

const int N = 102;
int n, arr[N], p[9],sum,hashTable[9] = {false};
vector<int> v;

void generateP(int index)
{
    if(index == 9)
    {
        for (int i = 1; i <= 8;i++)
        {
            sum = sum * 10 + p[i];
        }
        v.push_back(sum);
        sum = 0;
        return;
    }
    for (int i = 1; i <= 8;i++)
    {
        if(hashTable[i] == false)
        {
            //flag为true表示当前皇后不会和之前的皇后冲突
            bool flag = true;
            for (int j = 1; j < index;j++)
            {
                //与之前的皇后冲突
                if(abs(index - j) == abs(i-p[j]))
                {
                    flag = false;
                    break;
                }
            }
            //可以把皇后放在第i列
            if(flag)
            {
                //令第index行的皇后的列号为i
                p[index] = i;
                //第i列被占用
                hashTable[i] = true;
                //递归index+1行
                generateP(index + 1);
                //递归完毕,还原第i列未被占用
                hashTable[i] = false;
            }
        }
    }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n;i++)
    {
        cin >> arr[i];
    }
    generateP(1);
    for(int i = 0; i < n; i++)
    {
        cout << v.at(arr[i] - 1) << endl;
    } 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值