题目入口
题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 *8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
3
6
4
25
样例输出
25713864
17582463
36824175
随心写
八皇后问题和全排列问题都是很有代表性的递归问题,很有必要去将其一部部的弄懂,这样会对理解递归的过程很有帮助
代码
/*
http://codeup.hustoj.com/problem.php?cid=100000583&pid=3
*/
#include<iostream>
#include<vector>
using namespace std;
const int N = 102;
int n, arr[N], p[9],sum,hashTable[9] = {false};
vector<int> v;
void generateP(int index)
{
if(index == 9)
{
for (int i = 1; i <= 8;i++)
{
sum = sum * 10 + p[i];
}
v.push_back(sum);
sum = 0;
return;
}
for (int i = 1; i <= 8;i++)
{
if(hashTable[i] == false)
{
//flag为true表示当前皇后不会和之前的皇后冲突
bool flag = true;
for (int j = 1; j < index;j++)
{
//与之前的皇后冲突
if(abs(index - j) == abs(i-p[j]))
{
flag = false;
break;
}
}
//可以把皇后放在第i列
if(flag)
{
//令第index行的皇后的列号为i
p[index] = i;
//第i列被占用
hashTable[i] = true;
//递归index+1行
generateP(index + 1);
//递归完毕,还原第i列未被占用
hashTable[i] = false;
}
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n;i++)
{
cin >> arr[i];
}
generateP(1);
for(int i = 0; i < n; i++)
{
cout << v.at(arr[i] - 1) << endl;
}
return 0;
}