PAT-算法笔记-问题 D: 八皇后

题目描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

输入

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

输出

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

样例输入 Copy
3
6
4
25
样例输出 Copy
25713864
17582463
36824175
题解:套模板,将flag=true的情况 将数组转为整数,再排序即可
代码如下:

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <math.h>
using namespace std;
const int maxn=10;
int P[maxn];
long long ans[100]={0};
bool hashTable[maxn]={false};
int num=0;
void generateP(int index){
    if(index==9){ //递归边界
        bool flag=true;
        for(int i=1;i<=8;i++){
            for(int j=i+1;j<=8;j++){
                if(abs(i-j)==abs(P[i]-P[j])){
                    flag=false;
                }
            }
        }
        if(flag){
            for(int i=1;i<=8;i++){
                ans[num]=ans[num]*10+P[i];//将结果数组转化为整数
            }
            num++;
        }
        return;
    }
    for(int x=1;x<=8;x++){
        if(hashTable[x]==false){
            P[index]=x;
            hashTable[x]=true;
            generateP(index+1);
            hashTable[x]=false;
        }
    }
}
int main(){
    generateP(1);
    sort(ans,ans+num);
    // for(int i=0;i<num;i++){
    //     cout<<ans[i]<<endl;
    // }
    int t;
    cin>>t;
    while(t--){
        int n;
        cin>>n;
        cout<<ans[n-1]<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值