题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入 Copy
3
6
4
25
样例输出 Copy
25713864
17582463
36824175
题解:套模板,将flag=true的情况 将数组转为整数,再排序即可
代码如下:
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <math.h>
using namespace std;
const int maxn=10;
int P[maxn];
long long ans[100]={0};
bool hashTable[maxn]={false};
int num=0;
void generateP(int index){
if(index==9){ //递归边界
bool flag=true;
for(int i=1;i<=8;i++){
for(int j=i+1;j<=8;j++){
if(abs(i-j)==abs(P[i]-P[j])){
flag=false;
}
}
}
if(flag){
for(int i=1;i<=8;i++){
ans[num]=ans[num]*10+P[i];//将结果数组转化为整数
}
num++;
}
return;
}
for(int x=1;x<=8;x++){
if(hashTable[x]==false){
P[index]=x;
hashTable[x]=true;
generateP(index+1);
hashTable[x]=false;
}
}
}
int main(){
generateP(1);
sort(ans,ans+num);
// for(int i=0;i<num;i++){
// cout<<ans[i]<<endl;
// }
int t;
cin>>t;
while(t--){
int n;
cin>>n;
cout<<ans[n-1]<<endl;
}
return 0;
}