先说自己的逗比方法…
二分答案,把所有点用一个最小的矩形“框”起来,易证矩形的其中一个端点是最优解中正方形的一个端点,然后枚举四个端点后递归处理,差不多了…
AC code:
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
const int N=20010;
const int INF=1<<30;
int n,L=0,R=INF;
bool h[N];
struct Poi{
int x,y;
}P[N];
bool check(int l,int step){
if(step==4){
for(int i=1;i<=n;i++){
if(!h[i]) return 0;
}
return 1;
}
int xl=INF,xr=-INF,yl=INF,yr=-INF,X,Y;
bool flg=0;
for(int i=1;i<=n;i++){
if(!h[i]){
xl=min(xl,P[i].x);xr=max(xr,P[i].x);
yl=min(yl,P[i].y);yr=max(yr,P[i].y);
}
}
for(int i=1;i<=4;i++){
if(i==1) X=xl,Y=yl;
else if(i==2) X=xr,Y=yl;
else if(i==3) X=xl,Y=yr;
else X=xr,Y=yr;
vector<int> tmp;
for(int j=1;j<=n;j++){
if((!h[j])&&X-l<=P[j].x&&P[j].x<=X+l&&Y-l<=P[j].y&&P[j].y<=Y+l){
h[j]=1;
tmp.push_back(j);
}
}
flg|=check(l,step+1);
for(int j=0;j<(int)tmp.size();j++) h[tmp[j]]=0;
}
return flg;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d%d",&P[i].x,&P[i].y);
while(L+1!=R){
int M=(L+R)>>1;
if(check(M,1)) R=M;
else L=M;
}
printf("%d\n",R);
return 0;
}