在当今智能化快速发展的时代,AI防爆型摄像机以其独特的防爆性能和智能分析能力,在诸多领域展现出了巨大的应用潜力。因为AI防爆摄像机具备了前端分析能力,所以在一些无网无电的环境下需要进行AI分析就变得更可行了,通过4G或Wifi加太阳能的方式,不但能够快速部署、移动分析,只需要把分析结果上报到云端或本地存储就可以了,解决了后端分析对网络和电源的依赖,同时也完全解决了因为网络原因导致的视频数据丢失而引发的误报和报警不及时的问题。这些摄像机不仅能够在易燃易爆环境中稳定运行,还通过嵌入各种先进的AI算法,实现了对监控场景的深度解析和高效管理。那么,AI防爆型摄像机究竟包含了哪些算法?它们能否同时运行多种算法呢?本文将对此进行详细探讨。
一、AI防爆型摄像机的核心算法
AI防爆型摄像机的核心在于其内置的多种智能算法,这些算法通过深度学习、计算机视觉等技术,实现了对监控场景的智能识别、分析和预警。具体来说,AI防爆型摄像机通常包含以下几种主要算法:
1. 目标检测算法
目标检测算法是AI防爆型摄像机的基础算法之一。它使用深度学习模型,如卷积神经网络(CNN),来学习和提取图像中的特征,以检测和分类目标。常见的基于深度学习的目标检测算法包括Faster R-CNN、YOLO、SSD等。这些算法能够准确识别出监控场景中的物体,如人员、车辆等,并对其进行分类和标记。在防爆环境中,目标检测算法可以实时监测潜在的危险目标,为预警和应对提供有力支持,下面介绍几种目标检测算法:
安全帽检测:基于深度学习技术,实时识别工人是否佩戴安全帽,未佩戴时触发声光报警并记录违规行为,准确率可达95%以上
行车不行人:在车辆通行区域识别行人与车辆的交互状态,避免人车混行引发的安全事故(需结合目标检测与行为分析算法),在目标检测的同时,检测目标移动方向和速度,通过参数设置可以检测人车对向行驶才报警,人车对象同时移动才报警等不同情景。
2. 人体识别算法
人体识别算法是AI防爆型摄像机在安防领域的重要应用。通过对实时视频图像进行智能分析识别,人体识别算法可以实现对人体目标的精确检测和跟踪。在防爆环境中,这种算法能够实时监测人员的活动轨迹和行为特征,当检测到异常行为或人员入侵时,立即发出预警信息。此外,人体识别算法还可以结合人脸识别技术,进一步实现对特定人员的识别和追踪。
人员逗留检测:核心目标是判断某个区域内的人员是否长时间停留,并通过算法触发预警或记录。人员逗留检测一般分为以下几个步骤:(1).目标检测:识别视频或图像中的人员。(2).目标跟踪:持续跟踪同一人员的位置和轨迹。(3).时间序列分析:统计人员在特定区域的停留时长。(4).规则判定:根据预设阈值判断是否为“逗留”。
静止超时:系统设置超时时间,系统检测到画面中有人时,并且人员移动的幅度较少时,系统开始计时,当同一个人在画面中持续静止的时间超过设定时间时,系统第一时间产生报警并通知相关人员。
本功能预防在一些特殊场景中人员出现晕倒或意外时,配合系统的短信及电话通知,能第一时间通知到相关人员,预防事态的进一步严重化
静止超时AI算法的核心在于通过智能化的监控和分析,实现对人员状态的实时监控和预警。其基本工作原理如下:
(1)系统设置超时时间:根据不同的工作场景和安全要求,系统预先设置一个静止超时时间。这个时间通常根据人员在正常工作情况下的活动规律来确定,以便在异常情况下及时产生报警。
(2)监控画面中人员状态:在监控区域内,系统通过摄像头实时捕捉画面,并对画面中的人员进行识别和跟踪。当系统检测到画面中有人员出现时,开始对其状态进行监控。
(3)检测人员移动幅度:系统通过图像处理技术分析人员的移动幅度。如果检测到某个人员的移动幅度较小,系统会开始计时,记录该人员静止的持续时间。
(4)超时报警:当同一个人在画面中持续静止的时间超过预设的超时时间时,系统会第一时间发出报警信号。通过短信和电话通知相关人员,以便迅速采取措施。
3. 行为识别算法
行为识别算法是AI防爆型摄像机的又一重要功能。它通过分析人体的运动轨迹和行为特征,可以识别出各种异常行为,如奔跑、摔倒、打斗等。在防爆环境中,这些异常行为往往预示着潜在的危险,因此行为识别算法能够及时发现并预警。同时,行为识别算法还可以用于监控人员的日常工作状态,提高工作效率和安全性。
人员下井识别:系统对下井人员进行识别并统计,每下井一个人员就产生一次告警记录,并根据上级平台的要求,生成告警短视频和图片,对矿山每天下井人数进行上报。
本算法是上级监管单位对相应矿山的生产规模和每天下井人数进行统计和对比,防止矿山超产及停产矿违规生产等。
离岗识别:结合人脸识别或姿态分析,监测特定岗位人员的离岗行为,适用于需要持续值守的场景(如控制室、危险作业区)。
4. 物体识别算法
除了人体和行为识别外,AI防爆型摄像机还具备物体识别能力。通过深度学习算法,摄像机可以准确识别出监控场景中的各种物体,如设备、工具等。在防爆环境中,这种算法可以实时监测物体的位置和状态,当检测到物体异常移动或损坏时,立即发出预警信息。此外,物体识别算法还可以用于设备的状态监测和故障诊断,提高设备的可靠性和安全性。
自救器检测:下井人员必须佩戴自救器,AI智能分析算法首先判断画面中是否出现人员,其次识别画面中的自救器,再判断自救器是否在人员的识别区域内或相交,只有自救器识别框与人员识别框存在一定的相交或包含关系时,才属于该人员佩戴了自救器,避免多人下井时有人佩戴,有人未佩戴而出现的漏报情况,而且系统支持设置持续检测时间,在持续时间内未检测到自救器才告警,避免因角度不对未检测到自救器的情况,智能预警平台一旦检测到下井人员没有佩戴自救器,立即将报警信息推送至调度指挥中心,并通过短信、电话通知到相关负责人。此AI识别功能限定在最多1个固定位置摄像头,推荐摄像头位置:副井口入口,要求画面清晰,摄像机对着自救器佩戴面安装,避免人员经过时画面中自救器被身体遮挡的情况。
未戴自救器检测AI算法通过摄像头对井下作业人员进行实时监控,并利用图像识别技术检测自救器的佩戴情况。其基本工作原理如下:
人员检测:首先,系统通过摄像头捕捉井下作业人员的图像,并利用人员检测算法识别画面中出现的人员。这一步骤确保系统能够准确定位每一位下井人员。
自救器检测:在检测到人员后,系统进一步识别画面中的自救器。自救器通常具有明显的特征,如形状和颜色,算法会基于这些特征进行识别。
佩戴判断:系统通过计算自救器识别框与人员识别框的空间关系,判断自救器是否被佩戴。只有当自救器识别框与人员识别框存在一定的相交或包含关系时,系统才认为该人员佩戴了自救器。这一步骤可以有效避免多人下井时出现有人佩戴、有人未佩戴而导致的漏报情况。
持续检测与告警:系统支持设置持续检测时间,以避免因角度不对等原因未检测到自救器的误报情况。当在设定的持续时间内未检测到某人员佩戴自救器时,系统会立即发出报警,并将信息推送至调度指挥中心,同时通过短信和电话通知相关负责人。
皮带异物监测:皮带异物监测是在皮带的上方适当位置安装摄像机,平台实时监测运输皮带上运输的煤流表面的大煤块、锚杆、钻杆、煤矸石、木板、铁棍等进行实时分析监测,发现大于某规定体积的煤块、长度大于某尺寸的杆状物体进行预警,并抓图报警。
5. 相似度匹配算法
相似度匹配算法是AI防爆型摄像机在图像搜索和人脸识别等领域的重要应用。它能够在不同的图像中寻找相似的物体或场景,实现图像的快速检索和比对。在防爆环境中,这种算法可以用于人员的身份验证和追踪,提高安防系统的准确性和可靠性。同时,相似度匹配算法还可以用于图像的自动分类和归档,提高监控数据的管理效率。
二、AI防爆型摄像机的算法并行运行能力
在实际应用中,AI防爆型摄像机通常需要同时运行多种算法,以满足复杂场景下的监控需求。那么,这些算法能否在摄像机中并行运行呢?答案是肯定的。
1. 硬件支持
AI防爆型摄像机通常配备高性能的处理器和内存等硬件资源,以确保各种算法的高效运行。这些硬件资源不仅支持单个算法的快速处理,还能够实现多个算法的并行运行。通过合理的资源分配和调度,摄像机可以在保证性能的同时,满足多种算法同时运行的需求。
2. 算法优化
为了实现算法的并行运行,AI防爆型摄像机还需要对算法进行优化。这包括算法的并行化处理、资源占用优化等方面。通过采用先进的并行计算技术和算法优化方法,摄像机可以进一步提高算法的运行效率和准确性。同时,算法优化还可以降低摄像机的功耗和成本,提高其市场竞争力。
3. 场景适应性
在实际应用中,AI防爆型摄像机需要根据不同的监控场景和需求,选择合适的算法进行运行。这要求摄像机具备强大的场景适应性和灵活性。通过采用模块化的算法设计和可配置的算法库,摄像机可以根据用户需求进行定制化和扩展性开发,实现多种算法的灵活组合和并行运行。
4. 实际应用案例
以矿用AI人员入侵本安型防爆摄像头为例,该摄像头嵌入了AI人体识别算法,能够对人体目标特征进行检测分析识别预警。在实际应用中,该摄像头可以同时运行人体识别、行为识别等多种算法,实现对矿工活动轨迹的实时监测和预警。当有矿工进入到运输线上禁入范围内时,摄像头能够自动识别并抓拍图像,同时输出报警信号并联动语音警报。这种多算法并行运行的能力大大提高了矿区的安全监控水平。
AI防爆型摄像机包含了多种先进的智能算法,这些算法通过深度学习、计算机视觉等技术,实现了对监控场景的智能识别、分析和预警。同时,AI防爆型摄像机还具备强大的算法并行运行能力,能够在保证性能的同时,满足多种算法同时运行的需求。这种能力使得AI防爆型摄像机在安防、工业监测等领域展现出了巨大的应用潜力和价值。
矿山版分析服务器、AI盒子、IPC包含的算法有:皮带跑偏、皮带异物、皮带撕裂、皮带划痕、皮带运行状态识别(启停状态)、运输带有无煤识别、煤流量检测、运输带坐人检测、行车不行人、罐笼超员、静止超时、摇台是否到位、入侵检测、下料口堵料、运输带空载识别、井下堆料、提升井堆煤检测、提升井残留检测、瓦斯传感器识别、猴车长物件检测、佩戴自救器检测、风门监测、运料车通行识别、工作面刮板机监测、掘进面敲帮问顶监控、护帮板支护监测、人员巡检、入侵检测、区域超员预警、未戴安全帽检测、未穿工作服识别、火焰检测、离岗睡岗识别、倒地检测、摄像机遮挡识别、摄像机挪动识别等等算法。