一,过拟合、欠拟合及其解决方案
过拟合:模型的训练误差远小于它在测试数据集上的误差
欠拟合:模型无法得到较低的训练误差
因素:模型复杂度和训练数据集大小
训练集数据太少,会引起过拟合,模型越越简单,会引起欠拟合。折中办法是在保证能够训练的情况下,模型尽量复杂,数据量也随之增多
机器学习中遇到的方法:
- 正则化:在loss函数中加入,w^2项来强行训练减少loss,在训练的时候限制权值变大。训练过程需要降低整体的 loss,这时候,一方面能降低实际输出与样本之间的误差,也能降低权值大小
- dropout:解决网络各层输出对该层的网络结构的依赖性(虽然我不知道什么叫做依赖性),每次训练的时候,随机挑选几个神经元,作为改层的总神经元,
- 数据扩增,即增加训练数据样本:解决过拟合最有效的方法,只要给足够多的数据,让模型看见尽可能多的例外情况,它就会不断修正自己,从而得到更好的结果
- Early stopping:是一种迭代次数截断的方法来防止过拟合的方法,即在模型对训练数据集迭代收敛之前停止迭代来防止过拟合