过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

本文探讨了过拟合和欠拟合现象,提出正则化、dropout、数据扩增和早期停止等解决方案。同时,分析了梯度消失和梯度爆炸的问题,并介绍了BatchNormalization、梯度裁剪、ResNet和激活函数改进等应对策略。最后,简要提及了循环神经网络的进阶内容,如GRU、LSTM和深度RNN。
摘要由CSDN通过智能技术生成

一,过拟合、欠拟合及其解决方案

过拟合:模型的训练误差远小于它在测试数据集上的误差

欠拟合:模型无法得到较低的训练误差

因素:模型复杂度和训练数据集大小

训练集数据太少,会引起过拟合,模型越越简单,会引起欠拟合。折中办法是在保证能够训练的情况下,模型尽量复杂,数据量也随之增多

机器学习中遇到的方法

  • 正则化:在loss函数中加入,w^2项来强行训练减少loss,在训练的时候限制权值变大。训练过程需要降低整体的 loss,这时候,一方面能降低实际输出与样本之间的误差,也能降低权值大小
  • dropout:解决网络各层输出对该层的网络结构的依赖性(虽然我不知道什么叫做依赖性),每次训练的时候,随机挑选几个神经元,作为改层的总神经元,
  • 数据扩增,即增加训练数据样本:解决过拟合最有效的方法,只要给足够多的数据,让模型看见尽可能多的例外情况,它就会不断修正自己,从而得到更好的结果
  • Early stopping:是一种迭代次数截断的方法来防止过拟合的方法,即在模型对训练数据集迭代收敛之前停止迭代来防止过拟合

参考链接   https://www.cnblogs.com/zhh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值