常见的数据结构
1.栈
先进后出–>装子弹
2.队列
先进先出–>过安检
3.数组
-
查找元素快:通过索引,可以快速访问指定位置的元素。
-
增删元素慢:–>数组定长,改变数组长度的话,需要创建新的数组。
4.链表
-
查找元素慢:想查找某个元素,需要通过连接的节点,依次向后查找指定元素
-
增删元素快:
单向链表:前面的记录后面的地址,后面的不记录前面的地址
双向链表:前面的记录后面的,后面也记录前面的
5.二叉树
-
二叉树的特点
- 二叉树中,任意一个节点的度要小于等于2
- 节点: 在树结构中,每一个元素称之为节点
- 度: 每一个节点的子节点数量称之为度
- 二叉树中,任意一个节点的度要小于等于2
-
二叉树结构图
6.二叉查找树(二叉搜索树)
-
二叉查找树的特点
- 二叉查找树,又称二叉排序树或者二叉搜索树
- 每一个节点上最多有两个子节点
- 左子树上所有节点的值都小于根节点的值
- 右子树上所有节点的值都大于根节点的值
-
二叉查找树结构图
- 二叉查找树和二叉树对比结构图
- 二叉查找树添加节点规则
- 小的存左边
- 大的存右边
- 一样的不存
7.平衡二叉树
-
平衡二叉树的特点
- 二叉树左右两个子树的高度差不超过1
- 任意节点的左右两个子树都是一颗平衡二叉树
-
平衡二叉树旋转
-
旋转触发时机
- 当添加一个节点之后,该树不再是一颗平衡二叉树
-
左旋
- 就是将根节点的右侧往左拉,原先的右子节点变成新的父节点,并把多余的左子节点出让,给已经降级的根节点当右子节点
-
右旋
- 就是将根节点的左侧往右拉,左子节点变成了新的父节点,并把多余的右子节点出让,给已经降级根节点当左子节点
- 就是将根节点的左侧往右拉,左子节点变成了新的父节点,并把多余的右子节点出让,给已经降级根节点当左子节点
-
平衡二叉树和二叉查找树对比结构图
-
平衡二叉树旋转的四种情况
-
左左
-
左左: 当根节点左子树的左子树有节点插入,导致二叉树不平衡
-
如何旋转: 直接对整体进行右旋即可
-
-
左右
-
左右: 当根节点左子树的右子树有节点插入,导致二叉树不平衡
-
如何旋转: 先在左子树对应的节点位置进行左旋,在对整体进行右旋
-
-
右右
-
右右: 当根节点右子树的右子树有节点插入,导致二叉树不平衡
-
如何旋转: 直接对整体进行左旋即可
-
-
右左
-
右左:当根节点右子树的左子树有节点插入,导致二叉树不平衡
-
如何旋转: 先在右子树对应的节点位置进行右旋,在对整体进行左旋
-
-
-
8.红黑树
-
红黑树的特点
- 平衡二叉B树
- 每一个节点可以是红或者黑
- 红黑树不是高度平衡的,它的平衡是通过"自己的红黑规则"进行实现的
-
红黑树的红黑规则有哪些
-
每一个节点或是红色的,或者是黑色的
-
根节点必须是黑色
-
如果一个节点没有子节点或者父节点,则该节点相应的指针属性值为Nil,这些Nil视为叶节点,每个叶节点(Nil)是黑色的
-
如果某一个节点是红色,那么它的子节点必须是黑色(不能出现两个红色节点相连 的情况)
-
对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点
-
-
红黑树添加节点的默认颜色
- 添加节点时,默认为红色,效率高
-
红黑树添加节点后如何保持红黑规则
- 根节点位置
- 直接变为黑色
- 非根节点位置
- 父节点为黑色
- 不需要任何操作,默认红色即可
- 父节点为红色
- 叔叔节点为红色
- 将"父节点"设为黑色,将"叔叔节点"设为黑色
- 将"祖父节点"设为红色
- 如果"祖父节点"为根节点,则将根节点再次变成黑色
- 叔叔节点为黑色
- 将"父节点"设为黑色
- 将"祖父节点"设为红色
- 以"祖父节点"为支点进行旋转
- 叔叔节点为红色
- 父节点为黑色
- 根节点位置
9.哈希表
-
哈希值简介
1.是由计算机算出来的一个十进制,理解为对象的地址值(逻辑地址)
内存中分配给对象的地址值和哈希值没啥关系
2.是JDK根据对象的地址或者字符串或者数字算出来的int类型的数值
哈希表介绍
-
如何获取哈希值
Object类中的public int hashCode():返回对象的哈希码值
-
哈希值的特点
- 同一个对象多次调用hashCode()方法返回的哈希值是相同的
- 默认情况下,不同对象的哈希值是不同的。而重写hashCode()方法,可以实现让不同对象的哈希值相同
-
哈希表的存储过程
-
结论:
-
String中的hashCode方法,获取的是字符串内容的哈希值
-
内容一样(equals),哈希值(hashCode)一定一样
内容不一样,哈希值也有可能一样
-
-
JDK1.8以前
-
数组 + 链表
-
-
JDK1.8以后
-
节点个数少于等于8个
数组 + 链表
-
节点个数多于8个
数组 + 红黑树
-