自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 如何使用Python分析科技股的价格趋势

在这篇博客中,我们将通过一个实际的项目来探索如何使用Python进行股市数据的分析和可视化。我们将关注于三家科技巨头:苹果(AAPL)、谷歌(GOOGL)和微软(MSFT),分析他们的股价表现并绘制移动平均线以辨识趋势。

2024-07-18 10:51:39 552

原创 Python中发送邮件的艺术:普通邮件、PDF附件与Markdown附件

用的是qq邮箱,具体获取smtp的password可以看这个文章。

2024-07-18 10:24:41 447

原创 使用gpt4进行代码翻译

通过这个函数生成的位置编码可以加到模型的输入上(如前文所述的添加过程),这为模型提供了处理序列数据时位置的重要信息。这种编码方式允许模型捕捉输入中各个位置之间的相对或绝对位置关系,是处理序列数据时一种非常有效的技术。

2024-07-17 11:01:08 592

原创 YOLO8 物体检测,啥都不懂,尝试着玩一下

然后,在pycharm上输入。youtube上的一个教程。

2024-05-17 15:12:53 279

原创 文献综述方法论|全文翻译

最常见的错误是文献综述往往未能为该领域提供真正有价值的贡献。无论综述文章多么优秀和严谨,如果它没有提供足够的新内容,就不会被发表。太常见的情况是,文献综述只是对特定年份之间进行的研究进行描述性总结,描述了诸如发表的文章数量、涉及的主题、分析的引用、代表的作者以及可能使用的方法等信息,而没有进行任何更深入的分析。虽然有时这可能是有价值的,但通常不是这样,它们不太可能在任何期刊上发表。事实上,那些充斥着词云和引用分析的综述文章极不可能被发表。

2024-01-05 15:54:52 1215

原创 VRP的分解策略

本文讨论了车辆路径规划启发式算法的分解策略。分解策略包括确定子问题的大小、相关性信息、子问题的解决技术以及利用子问题解的方法。选择合适的子问题大小是控制难度和改进潜力的关键因素。相关性信息可以通过空间相关性、时间相关性、历史相关性和模式相关性来衡量。子问题的解决技术可以采用各种方法,从简单的贪婪重构启发式算法到递归应用于子问题的元启发式算法,以及专门的枚举技术和分支定价算法。利用子问题解的方法可以直接替换或改进精英解,也可以通过并发生成和集成子问题的解来形成完整的解。

2023-12-18 21:35:08 1054

原创 Which local search operator best 4 SPVRPTW:or and 2-opt*

本文的贡献是对具有拆分送货和时间窗口的车辆路径问题进行本地搜索移动算子的测试。作者分析了常用于车辆路径问题和其变体的本地搜索移动算子以及蚁群优化元启发式方法的组合效果,并对具有拆分送货和时间窗口的车辆路径问题的解决方案质量进行了比较。实验设计包括93种不同的本地搜索算子配置[14]。通过实验结果,在解决成本与运行时间之间取得了平衡的算子配置(Cluster 1)表现最好,但其他三个集群中,Cluster 1表现一般,这可能在特定应用中对成本或运行时间的价值有不同需求。

2023-12-18 16:40:05 1116

原创 VRP的优质解与劣质解的区别分析

启发式算法是解决复杂组合优化问题时的首选武器。尽管大量的研究集中在对特定问题调整启发式,但很少有研究来研究问题本身的结构特征。文章认为,关于区分组合优化问题的好解和不那么好解的结构特征的知识,可以有助于设计有效的启发式方法。文章开发了一种基于数据挖掘的方法,可以生成这样的知识,并将其应用于车辆的路径问题。通过定义几个度量标准来描述VRP解决方案和VRP实例,并为各种实例生成和分类192.000个解决方案。有了这些指标,我们就能够区分最优解和非最优解,准确率高达90%。

2023-12-14 17:22:44 841

原创 decomposition-based multi-objective algorithm4SPDPTW

本文提出的主要研究问题集中在多目标选择性接送和配送问题(PDPs),特别是在时间窗口内进行操作的情况。研究问题可以概述如下:双目标优化问题:如何在最大化盈利和最小化旅行成本之间找到平衡?这个问题强调了两个通常相互对立的目标:一方面是尽可能多地收集利润,另一方面是尽量减少成本,其中成本不仅包括旅行距离或时间,还可能涉及能源消耗和温室气体排放等环境因素。选择性PDPs的特点:在多种应用中,需要根据利润价值选择要路由的请求。

2023-12-11 20:37:33 873

原创 ALNS4VRPTWTF

文中提到的“带时间窗口和转运设施的车辆路径问题”(VRPTWTF)是一种车辆路径问题(VRP)的变体。在传统的车辆路径问题中,车辆从一个集散中心出发,直接将货物配送到各个客户处。然而,VRPTWTF引入了两个重要的额外特征:时间窗口和转运设施。时间窗口(Time Windows):这指的是每个客户地点可接收货物的特定时间范围。车辆必须在这个时间窗口内到达客户地点,以完成货物交付。时间窗口对路线规划构成了额外的约束,因为它限制了车辆到达各地点的可能时间。

2023-12-11 20:17:48 1057 1

原创 ALNS的MDP模型| 还没整理完12-08

有好几篇论文已经这样做了,先摆出一篇,然后再慢慢更新。

2023-12-08 11:26:29 884

原创 带转运的易腐货物取送货问题

本研究介绍了一种考虑交换点(交叉码头)的提货和交货问题的扩展定义,该交换点可以使车辆与其他车辆交换货物,以缩短其交货路线并减少运行时间。研究考虑了多个操作约束,如时间窗口、车辆容量和交叉码头处车辆的同步。此外,还考虑了易腐货物的特殊要求,这些货物不应在长途旅行中携带。研究将这个问题称为带有易腐货物的提货和交货问题(PDPCDPG),并将其建模为非线性规划问题。通过线性化将PDPCDPG重新构造为MILP,并在求解问题时通过添加有效不等式来缩小其搜索空间,以实现全局最优解。

2023-12-08 10:54:47 359

原创 超参数优化的多功能贝叶斯优化包SMAC3

本文介绍了SMAC3,一个用于超参数优化的多功能贝叶斯优化包。SMAC3使用随机森林作为代理模型,并结合了多样性的BO和强化策略,如积极竞赛和多样性方法。实证比较表明,SMAC3在HPO任务中表现出色,并且在不同阶段都优于其他优化器。未来的展望包括整合局部BO方法以及进一步优化SMAC3的性能。

2023-12-08 10:40:21 726

原创 贝叶斯参数调优Grouping遗传算法求解带时间窗和异质车队的多车场取送货问题

本文介绍了一种基于贝叶斯优化的方法,用于调整解决实际取送货问题的遗传算法的参数。该方法通过估计参数的相关性来解决参数调整问题,采用归一化的香农熵。研究还比较了该方法与其他优化方法的效果,并在一个流水车间调度问题中应用了贝叶斯优化方法来调整遗传算法的参数配置。结果表明,该方法能够提高元启发式算法的效率。

2023-12-08 10:29:17 1771

原创 DRL加强ALNS

本文介绍了一种使用深度强化学习控制自适应大邻域搜索的在线方法。作者使用了Proximal Policy Optimization (PPO)算法来训练一个DRL模型,该模型根据当前状态选择动作,并通过奖励函数来鼓励模型寻找最佳解决方案。作者将该方法应用于解决具有随机权重和时间窗口的时变定向问题,并通过实验证明了该方法的有效性。

2023-12-07 11:06:24 985 1

原创 ALNS的接受准则对比

本研究比较了自适应大邻域搜索元启发式算法中的不同接受准则。研究发现,不同的接受准则对算法的性能有显著影响。其中,SA、RRT和TA是表现最好的接受准则,而RW和HC则表现较差。此外,研究还发现线性版本的RRT和TA优于指数版本,并且固定终点的版本与动态调整终点的版本在性能上没有明显差异。这些结果对于改进自适应大邻域搜索算法的性能和效果具有重要意义。

2023-12-07 10:05:10 1017 1

原创 针对ALNS的自适应层进行元分析

本文回顾了在运筹学领域中的元分析应用。元分析是一种系统综述文献的方法,结合统计技术来整合和总结多个独立研究的结果。元分析可以提供比单个研究更精确的洞察力。本文指出,运筹学领域的研究主要集中在算法竞赛上,而缺乏对特定算法组件的独立研究。元分析可以帮助回答一些重要问题,如算法性能的改进和不同因素之间的相互作用。本文还介绍了元分析的统计分析方法,并讨论了固定效应模型和随机效应模型的应用。

2023-12-07 09:56:28 1112 1

原创 ALNS算法中随机化重要性的评价

本研究分析了在海上提货和交付问题中使用的ALNS元启发式算法中的随机化成分。研究者提出了简单的确定性替代方案,并通过实验比较了随机化和确定性成分的性能。结果表明,初始实现的简单确定性替代方案能够与随机化成分的性能相匹配。这项研究为进一步研究随机化的作用以及可能超越其性能的确定性成分提供了启示。

2023-12-07 09:36:38 906 1

原创 ALNS4DVRP|翻译

本文提出了一种用于动态车辆路径问题的混合算法。该问题涉及到在时间窗口内进行车辆路径规划,以最小化总行驶距离和服务时间。该算法结合了启发式和元启发式技术,通过局部搜索和邻域搜索来优化路径。实验结果表明,该算法在Lackner基准实例上取得了良好的性能。

2023-12-06 15:25:17 360 1

原创 VRP|Sequence or set optimization?

本文研究了车辆路径问题的启发式方法,特别是序列优化和集合优化。通过实验比较了不同搜索空间下的解决方案质量和计算时间。结果表明,在搜索空间SA中的搜索可以得到更高质量的解决方案,但计算时间较长。而在搜索空间SB k中,随着k的增加,解决方案质量和计算时间都有所提高。作者还介绍了一种名为"tunneling"的引导策略,用于在搜索历史中指导搜索,以发现更好的解决方案。在20世纪90年代及之后局部搜索和元启发式算法的发展中,Assignment和Sequencing优化开始得到更好的整合。

2023-12-06 15:04:49 1038 1

原创 GPT4:我敢编,你敢用吗

女朋友准备考研,英一,正好我手里有GPT4的体验号,把近十年英一的小作文用GPT4生成了一下。如果把图片中老奶奶说的话翻译成英文,GPT4的表现会不会好一些呢?啊,对了,这个现象已经有团队发现了,参考这篇公众号的推文。

2023-12-01 10:01:02 754 1

原创 ALNS4DVRP

适应性大邻域搜索(ALNS)算法的概念。

2023-11-30 20:53:51 2076 1

原创 自适应大邻域搜索算法在有时间窗口和预定线路的取送货问题中的应用

自适应大邻域搜索算法在有时间窗口和预定线路的取送货问题中的应用。

2023-11-30 20:22:10 1014 1

原创 水文|使用元分析方法评估ALNS里面的自适应层的效果|是自己水,文章不水

元启发式算法研究中,竞争性测试一直占主导地位,即设计一个在一系列基准问题实例上表现最好或者至少比其他算法更好的算法。但是这类研究很难产生通用的规律。元启发式文献中很少有文章回答一些基本的问题,比如自适应接受准则在局部搜索算法中是否优于确定性准则,变长禁忌表是否优于固定长度的等等。对于自适应大领域搜索(ALNS)算法而言,文献中也很少讨论自适应机制是否提高了算法性能这个问题。ALNS利用自适应的方式选择构造和修复启发式,这似乎可以提高算法鲁棒性,但这一效果还没有被确立。

2023-11-29 22:17:31 989 1

原创 论文汇报|AEALNS4CVRP|文章不水,自己很水

Enhanced Adaptive Large Neighborhood Search算法(EALNS)是一种改进的自适应大邻域搜索算法,用于解决容量车辆路径问题(CVRP)。该算法通过在销毁阶段引入线性删除策略和在决策阶段加入考虑时间因素的自适应机制,以克服传统ALNS算法的局部最优解和长时间解决问题的问题。

2023-11-29 17:18:43 812 1

原创 水文|关于ALNS的一篇综述|水文是自己的这篇博客,不是里面的综述

ALNS(Adaptive Large Neighborhood Search)算法是一种元启发式框架,用于在优化问题中寻找全局最优解。ALNS框架基于大邻域搜索的概念,通过破坏和修复操作来改进解决方案,同时利用自适应的方式选择不同的邻域。ALNS具有适应性、多邻域使用和在不同领域实施的灵活性等优点。在运输优化、制造业、医疗保健、农业和多目标优化问题等领域,ALNS算法已经取得了成功的应用。ALNS算法的关键在于使用大邻域进行搜索,这样可以更容易地在解决空间中从一个有希望的区域导航到另一个区域。

2023-11-28 20:53:37 2399

原创 A modified ALNS algorithm for vehicle routing problems with time windows

在本文中,我们受Ropke和[21]提出的自适应大邻域搜索(ALNS)的启发。所提出的启发式 方法使用Drake [12]的修改选择函数(MCF)作为一个优雅的选择机制,以支持最成功的操作员,而不 是轮盘赌的车轮选择。根据所罗门基准进行 了计算实验,并与经典的ALNS进行了比较,并对格林和洪伯格基准的实例进行了扩展。创新点: 改进了选择算子的函数,用MCF取代轮盘赌的选择机制,MCF是一个加权打分机制,用三个评价函数对算子进行评价,而轮盘赌只根据算子的表现进行打分。

2023-11-28 16:25:08 536

原创 组会提问讨论总结

记录一下从研一下学期开始,每期组会,师兄师姐们汇报完论文后,参会人员提出的一些问题,以供交流。自己记录一下,28号轮到自己汇报了,想法是把文献喂给chatdoc,然后用这些问题去问doc。但是自己没有提炼,心里还是发虚,对于自己想汇报的论文,到现在还没有个眉目,着急…,还是从b站多看看别人是怎么分享的吧。(更发虚了…)链接:【【RLChina论文研讨会】第34期 马一宁 解决车辆路径问题的深度强化学习方法:近期发展及挑战】链接:【一种基于拉格朗日松弛的带时间窗的车辆路径问题优化算法+215116】

2023-06-17 15:16:49 226 1

原创 【论文解读】Machine learning at the service of meta-heuristics for solving cop : A state-of-the-art

近年来,人们对将机器学习技术集成到元启发式算法中以解决组合优化问题的研究兴趣日益浓厚。这种集成旨在引导元启发式实现高效、有效和健壮的搜索,并在解决方案质量、收敛速度和健壮性方面提高它们的性能。由于开发了各种不同目的的集成方法,因此有必要回顾使用机器学习技术改进元启发式的最新进展。据我们所知,目前缺少一个全面的技术审查的文献。为了填补这一空白,本文回顾了机器学习技术在设计不同目的的元启发式元素中的应用,包括算法选择、适应度评估、初始化、进化、参数设置和合作。首先,我们描述了这些集成方式的关键概念和基础。

2023-06-15 20:28:04 645 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除