使用gpt4进行代码翻译

原代码链接

解释编码层的设计

class TSTEncoderLayer(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=256, store_attn=False,
                 norm='BatchNorm', attn_dropout=0, dropout=0., bias=True, activation="gelu", res_attention=False, pre_norm=False):
        super().__init__()
        assert not d_model%n_heads, f"d_model ({d_model}) must be divisible by n_heads ({n_heads})"
        d_k = d_model // n_heads if d_k is None else d_k
        d_v = d_model // n_heads if d_v is None else d_v

        # Multi-Head attention
        self.res_attention = res_attention
        self.self_attn = _MultiheadAttention(d_model, n_heads, d_k, d_v, attn_dropout=attn_dropout, proj_dropout=dropout, res_attention=res_attention)

        # Add & Norm
        self.dropout_attn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_attn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_attn = nn.LayerNorm(d_model)

        # Position-wise Feed-Forward
        self.ff = nn.Sequential(nn.Linear(d_model, d_ff, bias=bias),
                                get_activation_fn(activation),
                                nn.Dropout(dropout),
                                nn.Linear(d_ff, d_model, bias=bias))

        # Add & Norm
        self.dropout_ffn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_ffn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_ffn = nn.LayerNorm(d_model)

        self.pre_norm = pre_norm
        self.store_attn = store_attn


    def forward(self, src:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None) -> Tensor:

        # Multi-Head attention sublayer
        if self.pre_norm:
            src = self.norm_attn(src)
        ## Multi-Head attention
        if self.res_attention:
            src2, attn, scores = self.self_attn(src, src, src, prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        else:
            src2, attn = self.self_attn(src, src, src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        if self.store_attn:
            self.attn = attn
        ## Add & Norm
        src = src + self.dropout_attn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_attn(src)

        # Feed-forward sublayer
        if self.pre_norm:
            src = self.norm_ffn(src)
        ## Position-wise Feed-Forward
        src2 = self.ff(src)
        ## Add & Norm
        src = src + self.dropout_ffn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_ffn(src)

        if self.res_attention:
            return src, scores
        else:
            return src

这段代码定义了一个基于 Transformer 架构的编码层,它实现了多头自注意力机制和前馈网络,同时包含了一些可选的特性和配置。以下是这个 TSTEncoderLayer 类的详细设计解析:

参数

  • q_len: 查询的长度(在这段代码中没有直接使用,可能用于外部配置)。
  • d_model: 模型的特征维度。
  • n_heads: 多头注意力的头数。
  • d_k: 每个头的键维度。如果未指定,默认为 d_model // n_heads
  • d_v: 每个头的值维度。如果未指定,也默认为 d_model // n_heads
  • d_ff: 前馈网络中间层的维度。
  • store_attn: 是否存储注意力权重。
  • norm: 指定标准化层的类型(‘BatchNorm’ 或 ‘LayerNorm’)。
  • attn_dropout: 注意力层的dropout率。
  • dropout: 常规dropout率。
  • bias: 线性层是否包含偏置项。
  • activation: 前馈网络中使用的激活函数。
  • res_attention: 是否使用残差注意力(可能是一种特殊的注意力机制)。
  • pre_norm: 是否使用预归一化(先进行归一化再进行其他操作)。

组件构建

  1. 多头自注意力 (_MultiheadAttention):

    • 初始化一个自定义的多头注意力模块 _MultiheadAttention,传入模型维度、头数、键维度、值维度和dropout配置。
  2. 标准化层:

    • 根据 norm 参数决定使用批归一化(BatchNorm)或层归一化(LayerNorm)。Transpose 操作在这里用于调整维度,适应批归一化的需求。
  3. 前馈网络:

    • 使用两个线性层和一个激活函数构建。第一个线性层扩展维度到 d_ff,之后是激活函数和dropout,最后一个线性层将维度恢复到 d_model
  4. Dropout:

    • 为注意力和前馈网络配置了dropout层,以减少过拟合。

前向传播 (forward 方法)

  • 预归一化:

    • 如果启用了 pre_norm,则先对输入进行归一化。
  • 多头自注意力处理:

    • 根据 res_attention 的配置,决定是调用标准的自注意力还是带有残差连接的自注意力。
    • 如果启用了 store_attn,则将注意力权重保存下来。
  • 残差连接和标准化:

    • 应用注意力后的输出通过dropout,然后加上输入(残差连接),最后进行标准化。
  • 前馈网络:

    • 先对上一步的输出进行归一化(如果启用了 pre_norm)。
    • 然后通过前馈网络,应用dropout,加上输入(残差连接),最后进行标准化。
  • 输出:

    • 根据 res_attention 返回相应的输出,可能包含额外的注意力分数。

这个类提供了一个灵活且功能丰富的编码层实现,适用于处理序列数据,特别是在需要关注时间序列数据处理的应用中。它利用了Transformer架构的核心优势,并通过参数化提供了定制化的功能。

通过在PatchTST_backbone类中被patch处理后的z,被送入到了哪个模块呢?

在您提到的 PatchTST_backbone 类中,被patch处理后的 z 可能会被送入多个模块,具体取决于该类的设计和结构。然而,基于通常的处理流程和模式,以下是一些可能的模块,其中 z 可能被送入:

  1. 自注意力层(Multi-Head Attention):

    • 在基于Transformer的架构中,经常会首先将处理过的 z(例如,经过某种形式的patch处理或特征提取后的输出)输入到自注意力层。这个层会利用 z 中的信息来计算注意力权重,以此来提取特征中的关键信息,并进行相应的重组。
  2. 位置编码(Positional Encoding):

    • 如果 z 包含序列数据,可能需要加入位置编码来提供序列中各元素的位置信息。这对于捕捉序列的顺序特征非常重要,特别是在处理诸如时间序列这类数据时。
  3. 前馈网络(Feed-Forward Network, FFN):

    • 在经过自注意力层处理后,z 通常会被送入前馈网络。这个网络通常包含多个线性层和非线性激活函数,用于进一步转换特征并增强模型的表达能力。
  4. 残差连接和归一化层:

    • 在Transformer架构中,每个主要处理步骤(如自注意力和前馈网络)之后,通常会有残差连接和归一化处理(例如层归一化或批归一化)。这些步骤有助于改善训练过程的稳定性和模型的性能。
  5. 下一个编码层或解码层:

    • 在多层架构中,z 可能会被连续传递到下一个编码层或解码层,以进行更深层次的处理和特征抽取。

若您具体提到的是某个特定实现或框架(例如用于特定任务的定制模型),z 的处理流程可能还会包含更多特定的操作或模块。如果您能提供更多关于 PatchTST_backbone 类的上下文或详细信息,我可以给出更具体的解释。

解释代码并举例

class PatchTST_backbone(nn.Module):
    def __init__(self, c_in:int, context_window:int, target_window:int, patch_len:int, stride:int, max_seq_len:Optional[int]=1024, 
                 n_layers:int=3, d_model=128, n_heads=16, d_k:Optional[int]=None, d_v:Optional[int]=None,
                 d_ff:int=256, norm:str='BatchNorm', attn_dropout:float=0., dropout:float=0., act:str="gelu", key_padding_mask:bool='auto',
                 padding_var:Optional[int]=None, attn_mask:Optional[Tensor]=None, res_attention:bool=True, pre_norm:bool=False, store_attn:bool=False,
                 pe:str='zeros', learn_pe:bool=True, fc_dropout:float=0., head_dropout = 0, padding_patch = None,
                 pretrain_head:bool=False, head_type = 'flatten', individual = False, revin = True, affine = True, subtract_last = False,
                 verbose:bool=False, **kwargs):
        
        super().__init__()
        
        # RevIn
        self.revin = revin
        if self.revin: self.revin_layer = RevIN(c_in, affine=affine, subtract_last=subtract_last)
        
        # Patching
        self.patch_len = patch_len
        self.stride = stride
        self.padding_patch = padding_patch
        patch_num = int((context_window - patch_len)/stride + 1)
        if padding_patch == 'end': # can be modified to general case
            self.padding_patch_layer = nn.ReplicationPad1d((0, stride)) 
            patch_num += 1
        
        # Backbone 
        self.backbone = TSTiEncoder(c_in, patch_num=patch_num, patch_len=patch_len, max_seq_len=max_seq_len,
                                n_layers=n_layers, d_model=d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff,
                                attn_dropout=attn_dropout, dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
                                attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
                                pe=pe, learn_pe=learn_pe, verbose=verbose, **kwargs)

        # Head
        self.head_nf = d_model * patch_num
        self.n_vars = c_in
        self.pretrain_head = pretrain_head
        self.head_type = head_type
        self.individual = individual

        if self.pretrain_head: 
            self.head = self.create_pretrain_head(self.head_nf, c_in, fc_dropout) # custom head passed as a partial func with all its kwargs
        elif head_type == 'flatten': 
            self.head = Flatten_Head(self.individual, self.n_vars, self.head_nf, target_window, head_dropout=head_dropout)
        
    
    def forward(self, z):                                                                   # z: [bs x nvars x seq_len]
        # norm
        if self.revin: 
            z = z.permute(0,2,1)
            z = self.revin_layer(z, 'norm')
            z = z.permute(0,2,1)
            
        # do patching
        if self.padding_patch == 'end':
            z = self.padding_patch_layer(z)
        z = z.unfold(dimension=-1, size=self.patch_len, step=self.stride)                   # z: [bs x nvars x patch_num x patch_len]
        z = z.permute(0,1,3,2)                                                              # z: [bs x nvars x patch_len x patch_num]
        
        # model
        z = self.backbone(z)                                                                # z: [bs x nvars x d_model x patch_num]
        z = self.head(z)                                                                    # z: [bs x nvars x target_window] 
        
        # denorm
        if self.revin: 
            z = z.permute(0,2,1)
            z = self.revin_layer(z, 'denorm')
            z = z.permute(0,2,1)
        return z

这段代码定义了一个基于时间序列处理的神经网络模型类 PatchTST_backbone,它主要包括以下几个部分:

  1. 初始化函数 (__init__):

    • 接收各种配置参数,包括输入特征数 (c_in)、上下文窗口大小 (context_window)、目标窗口大小 (target_window)、每个patch的长度 (patch_len)、步长 (stride) 等。
    • Revin 层:条件反转归一化,用于调整特征的分布,可以选择是否启用 (revin),以及配置参数 (affine, subtract_last)。
    • 数据切分为patches:计算根据 patch_lenstridecontext_window 内可以切分出的patch数量。如果设置了 padding_patch,则可能会在数据的末尾添加额外的填充,以确保所有数据都被处理。
    • 编码器 (TSTiEncoder):这是模型的主体部分,负责处理时间序列数据,通过多头自注意力机制和前馈网络进行特征提取。
    • 输出头 (head):根据预训练标志 (pretrain_head) 和头部类型 (head_type) 配置输出层,用于最终的预测任务。
  2. 前向传播函数 (forward):

    • 归一化:如果启用 Revin,先进行归一化处理。
    • 数据切分:将输入数据根据 patch_lenstride 切分成多个小段,称为patches。
    • 模型处理:将这些patches通过编码器进行处理。
    • 输出头处理:通过配置的输出头得到最终的预测结果。
    • 反归一化:如果启用 Revin,在得到最终输出之前进行反归一化处理。

数据如何进行patch处理的简单例子

假设我们有以下输入数据:

  • 输入数据的形状:(batch_size, n_vars, seq_len),其中 batch_size 是批量大小,n_vars 是变量数(如多变量时间序列的特征数量),seq_len 是序列长度。
  • context_window = 100,表示我们关注长度为100的时间序列窗口。
  • patch_len = 10,表示每个patch包含10个时间点的数据。
  • stride = 5,表示每个patch之间的步长为5个时间点。

例如,如果我们的输入数据维度是 (1, 1, 100),即批量大小为1,有1个变量,序列长度为100:

  1. 切分patches:根据 patch_lenstride,从序列中提取patches。第一个patch包含第0到第9个时间点,第二个patch从第5到第14个时间点,依此类推。
  2. 结果是将输入数据 (1, 1, 100) 转换为多个 (1, 1, 10) 的小段。具体地,根据计算,从0到95的位置开始,每隔5个时间点取一次,可以取得19个这样的patches。

这种patch处理方式允许模型捕获时间序列数据中的局部依赖关系,并通过重叠的方式增加数据的使用效率。

举例说明一下每个patch进入编码器后,是如何被编码器处理的

class TSTiEncoder(nn.Module):  #i means channel-independent
    def __init__(self, c_in, patch_num, patch_len, max_seq_len=1024,
                 n_layers=3, d_model=128, n_heads=16, d_k=None, d_v=None,
                 d_ff=256, norm='BatchNorm', attn_dropout=0., dropout=0., act="gelu", store_attn=False,
                 key_padding_mask='auto', padding_var=None, attn_mask=None, res_attention=True, pre_norm=False,
                 pe='zeros', learn_pe=True, verbose=False, **kwargs):
        
        
        super().__init__()
        
        self.patch_num = patch_num
        self.patch_len = patch_len
        
        # Input encoding
        q_len = patch_num
        self.W_P = nn.Linear(patch_len, d_model)        # Eq 1: projection of feature vectors onto a d-dim vector space
        self.seq_len = q_len

        # Positional encoding
        self.W_pos = positional_encoding(pe, learn_pe, q_len, d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

        # Encoder
        self.encoder = TSTEncoder(q_len, d_model, n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout, dropout=dropout,
                                   pre_norm=pre_norm, activation=act, res_attention=res_attention, n_layers=n_layers, store_attn=store_attn)

        
    def forward(self, x) -> Tensor:                                              # x: [bs x nvars x patch_len x patch_num]
        
        n_vars = x.shape[1]
        # Input encoding
        x = x.permute(0,1,3,2)                                                   # x: [bs x nvars x patch_num x patch_len]
        x = self.W_P(x)                                                          # x: [bs x nvars x patch_num x d_model]

        u = torch.reshape(x, (x.shape[0]*x.shape[1],x.shape[2],x.shape[3]))      # u: [bs * nvars x patch_num x d_model]
        u = self.dropout(u + self.W_pos)                                         # u: [bs * nvars x patch_num x d_model]

        # Encoder
        z = self.encoder(u)                                                      # z: [bs * nvars x patch_num x d_model]
        z = torch.reshape(z, (-1,n_vars,z.shape[-2],z.shape[-1]))                # z: [bs x nvars x patch_num x d_model]
        z = z.permute(0,1,3,2)                                                   # z: [bs x nvars x d_model x patch_num]
        
        return z    
            
            
    
# Cell
class TSTEncoder(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=None, 
                        norm='BatchNorm', attn_dropout=0., dropout=0., activation='gelu',
                        res_attention=False, n_layers=1, pre_norm=False, store_attn=False):
        super().__init__()

        self.layers = nn.ModuleList([TSTEncoderLayer(q_len, d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm,
                                                      attn_dropout=attn_dropout, dropout=dropout,
                                                      activation=activation, res_attention=res_attention,
                                                      pre_norm=pre_norm, store_attn=store_attn) for i in range(n_layers)])
        self.res_attention = res_attention

    def forward(self, src:Tensor, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
        output = src
        scores = None
        if self.res_attention:
            for mod in self.layers: output, scores = mod(output, prev=scores, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output
        else:
            for mod in self.layers: output = mod(output, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output



class TSTEncoderLayer(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=256, store_attn=False,
                 norm='BatchNorm', attn_dropout=0, dropout=0., bias=True, activation="gelu", res_attention=False, pre_norm=False):
        super().__init__()
        assert not d_model%n_heads, f"d_model ({d_model}) must be divisible by n_heads ({n_heads})"
        d_k = d_model // n_heads if d_k is None else d_k
        d_v = d_model // n_heads if d_v is None else d_v

        # Multi-Head attention
        self.res_attention = res_attention
        self.self_attn = _MultiheadAttention(d_model, n_heads, d_k, d_v, attn_dropout=attn_dropout, proj_dropout=dropout, res_attention=res_attention)

        # Add & Norm
        self.dropout_attn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_attn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_attn = nn.LayerNorm(d_model)

        # Position-wise Feed-Forward
        self.ff = nn.Sequential(nn.Linear(d_model, d_ff, bias=bias),
                                get_activation_fn(activation),
                                nn.Dropout(dropout),
                                nn.Linear(d_ff, d_model, bias=bias))

        # Add & Norm
        self.dropout_ffn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_ffn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_ffn = nn.LayerNorm(d_model)

        self.pre_norm = pre_norm
        self.store_attn = store_attn


    def forward(self, src:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None) -> Tensor:

        # Multi-Head attention sublayer
        if self.pre_norm:
            src = self.norm_attn(src)
        ## Multi-Head attention
        if self.res_attention:
            src2, attn, scores = self.self_attn(src, src, src, prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        else:
            src2, attn = self.self_attn(src, src, src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        if self.store_attn:
            self.attn = attn
        ## Add & Norm
        src = src + self.dropout_attn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_attn(src)

        # Feed-forward sublayer
        if self.pre_norm:
            src = self.norm_ffn(src)
        ## Position-wise Feed-Forward
        src2 = self.ff(src)
        ## Add & Norm
        src = src + self.dropout_ffn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_ffn(src)

        if self.res_attention:
            return src, scores
        else:
            return src




class _MultiheadAttention(nn.Module):
    def __init__(self, d_model, n_heads, d_k=None, d_v=None, res_attention=False, attn_dropout=0., proj_dropout=0., qkv_bias=True, lsa=False):
        """Multi Head Attention Layer
        Input shape:
            Q:       [batch_size (bs) x max_q_len x d_model]
            K, V:    [batch_size (bs) x q_len x d_model]
            mask:    [q_len x q_len]
        """
        super().__init__()
        d_k = d_model // n_heads if d_k is None else d_k
        d_v = d_model // n_heads if d_v is None else d_v

        self.n_heads, self.d_k, self.d_v = n_heads, d_k, d_v

        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=qkv_bias)

        # Scaled Dot-Product Attention (multiple heads)
        self.res_attention = res_attention
        self.sdp_attn = _ScaledDotProductAttention(d_model, n_heads, attn_dropout=attn_dropout, res_attention=self.res_attention, lsa=lsa)

        # Poject output
        self.to_out = nn.Sequential(nn.Linear(n_heads * d_v, d_model), nn.Dropout(proj_dropout))


    def forward(self, Q:Tensor, K:Optional[Tensor]=None, V:Optional[Tensor]=None, prev:Optional[Tensor]=None,
                key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):

        bs = Q.size(0)
        if K is None: K = Q
        if V is None: V = Q

        # Linear (+ split in multiple heads)
        q_s = self.W_Q(Q).view(bs, -1, self.n_heads, self.d_k).transpose(1,2)       # q_s    : [bs x n_heads x max_q_len x d_k]
        k_s = self.W_K(K).view(bs, -1, self.n_heads, self.d_k).permute(0,2,3,1)     # k_s    : [bs x n_heads x d_k x q_len] - transpose(1,2) + transpose(2,3)
        v_s = self.W_V(V).view(bs, -1, self.n_heads, self.d_v).transpose(1,2)       # v_s    : [bs x n_heads x q_len x d_v]

        # Apply Scaled Dot-Product Attention (multiple heads)
        if self.res_attention:
            output, attn_weights, attn_scores = self.sdp_attn(q_s, k_s, v_s, prev=prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        else:
            output, attn_weights = self.sdp_attn(q_s, k_s, v_s, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        # output: [bs x n_heads x q_len x d_v], attn: [bs x n_heads x q_len x q_len], scores: [bs x n_heads x max_q_len x q_len]

        # back to the original inputs dimensions
        output = output.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * self.d_v) # output: [bs x q_len x n_heads * d_v]
        output = self.to_out(output)

        if self.res_attention: return output, attn_weights, attn_scores
        else: return output, attn_weights


class _ScaledDotProductAttention(nn.Module):
    r"""Scaled Dot-Product Attention module (Attention is all you need by Vaswani et al., 2017) with optional residual attention from previous layer
    (Realformer: Transformer likes residual attention by He et al, 2020) and locality self sttention (Vision Transformer for Small-Size Datasets
    by Lee et al, 2021)"""

    def __init__(self, d_model, n_heads, attn_dropout=0., res_attention=False, lsa=False):
        super().__init__()
        self.attn_dropout = nn.Dropout(attn_dropout)
        self.res_attention = res_attention
        head_dim = d_model // n_heads
        self.scale = nn.Parameter(torch.tensor(head_dim ** -0.5), requires_grad=lsa)
        self.lsa = lsa

    def forward(self, q:Tensor, k:Tensor, v:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
        '''
        Input shape:
            q               : [bs x n_heads x max_q_len x d_k]
            k               : [bs x n_heads x d_k x seq_len]
            v               : [bs x n_heads x seq_len x d_v]
            prev            : [bs x n_heads x q_len x seq_len]
            key_padding_mask: [bs x seq_len]
            attn_mask       : [1 x seq_len x seq_len]
        Output shape:
            output:  [bs x n_heads x q_len x d_v]
            attn   : [bs x n_heads x q_len x seq_len]
            scores : [bs x n_heads x q_len x seq_len]
        '''

        # Scaled MatMul (q, k) - similarity scores for all pairs of positions in an input sequence
        attn_scores = torch.matmul(q, k) * self.scale      # attn_scores : [bs x n_heads x max_q_len x q_len]

        # Add pre-softmax attention scores from the previous layer (optional)
        if prev is not None: attn_scores = attn_scores + prev

        # Attention mask (optional)
        if attn_mask is not None:                                     # attn_mask with shape [q_len x seq_len] - only used when q_len == seq_len
            if attn_mask.dtype == torch.bool:
                attn_scores.masked_fill_(attn_mask, -np.inf)
            else:
                attn_scores += attn_mask

        # Key padding mask (optional)
        if key_padding_mask is not None:                              # mask with shape [bs x q_len] (only when max_w_len == q_len)
            attn_scores.masked_fill_(key_padding_mask.unsqueeze(1).unsqueeze(2), -np.inf)

        # normalize the attention weights
        attn_weights = F.softmax(attn_scores, dim=-1)                 # attn_weights   : [bs x n_heads x max_q_len x q_len]
        attn_weights = self.attn_dropout(attn_weights)

        # compute the new values given the attention weights
        output = torch.matmul(attn_weights, v)                        # output: [bs x n_heads x max_q_len x d_v]

        if self.res_attention: return output, attn_weights, attn_scores
        else: return output, attn_weights

在你的代码中,TSTiEncoder 类是一个为时间序列处理定制的编码器,具体针对每个输入patch进行编码的过程涉及以下几个关键步骤:

1. 输入编码

每个输入的patch(维度为 [batch_size, n_vars, patch_len, patch_num])首先通过一个线性层 (self.W_P) 进行处理,将每个patch的长度从 patch_len 转换到模型的维度 d_model。因此,每个patch都被投影到了一个固定的维度空间中,形成新的表示 [batch_size, n_vars, patch_num, d_model]

2. 位置编码

接下来,给上述的编码添加位置信息,因为自注意力机制本身是不具备处理序列顺序的能力的。位置编码可以是学习得到的,也可以是固定的,依据初始化参数 pelearn_pe 而定。这个位置编码被加到每个patch的编码上,以提供模型关于序列中patch位置的信息。

3. 自注意力编码器

编码后的数据传入自注意力编码器 (TSTEncoder),该编码器可能包含多个自注意力层 (TSTEncoderLayer),每个层都进一步处理输入数据。在每一层中,以下步骤被执行:

  • 多头自注意力:在这一步中,输入分为多个头,每个头处理输入的一部分信息。通过计算所有输入元素之间的关系(点积),每个元素可以获得序列中所有其他元素的加权表示。
  • 前馈网络:自注意力的输出通过一个前馈网络,该网络通常包含两个线性变换和一个非线性激活函数。

每个自注意力层都使用残差连接,即输入直接加到自注意力和前馈网络的输出上,然后通过层归一化(LayerNorm)或批归一化(BatchNorm)。这有助于避免深层网络训练过程中的梯度消失问题。

4. 输出重塑

编码器的输出再次被重塑为原来的维度 [batch_size, nvars, d_model, patch_num],以匹配模型后续层的预期输入格式。

具体例子

假设我们有以下输入数据:

  • 输入数据形状:(1, 1, 10, 4),表示1个样本,1个变量,每个patch长度为10,总共有4个patch。

在通过编码器处理后,这个序列会被映射到一个新的维度空间 (1, 1, 4, 128),如果 d_model 被设置为128。在这个过程中,每个patch不仅仅是独立编码的,还通过自注意力机制获得了与其他所有patch的关联信息,从而使得模型能够把握整个序列的上下文。

每个patch在自注意力编码器中,如何进行QKV计算的

在自注意力编制器中处理每个patch时,使用了一个称为多头注意力(Multi-Head Attention)的结构来进行 QKV (Query, Key, Value) 计算。下面是详细的解释过程:

1. 线性变换生成Q、K、V

  • 对于给定的输入(假设为 (X),其中 (X) 的维度是 [batch_size, n_vars, patch_num, d_model]),首先通过三个独立的线性层(权重矩阵)来生成查询(Query, Q)、键(Key, K)和值(Value, V)矩阵。
  • 这三个线性层分别将输入 (X) 映射到不同的空间以得到 Q、K 和 V。例如,如果 (d_{model}) 是 128,且头数 (n_{heads}) 是 8,那么 (d_k) 和 (d_v) 通常也会是 16(128/8)。

2. 切分为多个头

  • 进行 Q、K、V 计算后,每个矩阵被切分为多个头,具体操作是将 (d_{model}) 维度拆分为 (n_{heads}) 个 (d_k) 或 (d_v) 维度的小矩阵。
  • 这允许模型在不同的表示子空间上并行处理信息,每个头关注输入的不同方面。

3. 点积注意力

  • 每个头的 Q 和 K 通过点积运算得到注意力分数(attention scores)。这些分数表达了输入序列中不同位置之间的相互影响力度。
  • 点积结果通常会除以 ( \sqrt{d_k} ) 进行缩放处理,以避免在训练中造成梯度消失或爆炸。
  • 如果存在掩码(用于屏蔽不应被考虑的输入部分,如填充位置),在 softmax 应用之前会将这些位置的分数设为负无穷(或极大的负数)。

4. softmax 归一化

  • 使用 softmax 函数对每一行的注意力分数进行归一化,这样每一行的所有值之和为1,表示概率分布。
  • 这一步骤产生的是注意力权重(attention weights),它表明了每个位置对当前位置输出的贡献程度。

5. 加权和

  • 将得到的注意力权重与对应的 V 相乘,得到每个位置的输出。基本上,每个输出是输入值的加权和,权重由相关性(通过 Q 和 K 的相似度确定)决定。

6. 合并头并输出

  • 将所有头的输出合并回 (d_{model}) 维度,并通过一个线性层再次映射,以产生最终的自注意力层输出。

在这个过程中,通过多头注意力机制,模型可以在不同的表示空间中捕捉输入序列的不同特征,从而更加有效地编码序列中的复杂模式。

当然可以!让我们用一个具体的例子来说明在自注意力机制中如何进行Q、K、V的计算和处理。我们假设有以下简化的参数:

  • 输入维度 (d_{model}): 4
  • 头数 (n_{heads}): 2
  • 每个头的维度 (d_k = d_v): 2
  • 输入序列:有2个patches,每个patch编码后维度为 (d_{model})

输入数据

假设我们有一个小批量,包含1个样本,每个样本有2个patches,每个patch的特征维度为4。这可以表示为矩阵 (X):

在这里插入图片描述

线性变换生成Q, K, V

我们对Q, K, V使用三个不同的线性变换(实际中它们通常是通过神经网络层实现的,这里我们假设它们是简单的乘法操作):

应用这些矩阵,我们得到:

在这里插入图片描述

切分为多个头

每个矩阵切分为2个头,每个头处理一部分数据。例如,对于Q:

在这里插入图片描述

每个矩阵现在有两部分,每部分维度 (d_k = 2)。

点积计算注意力得分

对于第一个头,计算Q和K的点积(并除以 (\sqrt{d_k} = \sqrt{2})):

在这里插入图片描述

Softmax 归一化

接下来,对每一行进行softmax归一化:

在这里插入图片描述

加权和

使用上述权重矩阵加权V的相应部分:

在这里插入图片描述

这就是一个头的输出。对第二个头重复相同步骤后,结果会被合并并通过最后一个线性层处理,以形成最终输出。

这个例子虽然简化了实际过程(如没有实际的权重矩阵值,使用了单位矩阵代替),但基本流程是一致的。这样你可以看到多头注意力是如何在处理输入时,允许模型在不同的子空间中并行学习序列信息的。

解释一下pretrain_head和Flatten_Head是干什么用的,能够简单举例说明

def create_pretrain_head(self, head_nf, vars, dropout):
        return nn.Sequential(nn.Dropout(dropout),
                    nn.Conv1d(head_nf, vars, 1)
                    )


class Flatten_Head(nn.Module):
    def __init__(self, individual, n_vars, nf, target_window, head_dropout=0):
        super().__init__()
        
        self.individual = individual
        self.n_vars = n_vars
        
        if self.individual:
            self.linears = nn.ModuleList()
            self.dropouts = nn.ModuleList()
            self.flattens = nn.ModuleList()
            for i in range(self.n_vars):
                self.flattens.append(nn.Flatten(start_dim=-2))
                self.linears.append(nn.Linear(nf, target_window))
                self.dropouts.append(nn.Dropout(head_dropout))
        else:
            self.flatten = nn.Flatten(start_dim=-2)
            self.linear = nn.Linear(nf, target_window)
            self.dropout = nn.Dropout(head_dropout)
            
    def forward(self, x):                                 # x: [bs x nvars x d_model x patch_num]
        if self.individual:
            x_out = []
            for i in range(self.n_vars):
                z = self.flattens[i](x[:,i,:,:])          # z: [bs x d_model * patch_num]
                z = self.linears[i](z)                    # z: [bs x target_window]
                z = self.dropouts[i](z)
                x_out.append(z)
            x = torch.stack(x_out, dim=1)                 # x: [bs x nvars x target_window]
        else:
            x = self.flatten(x)
            x = self.linear(x)
            x = self.dropout(x)
        return x

在你提供的代码中,create_pretrain_headFlatten_Head 都是用于模型的最后阶段,具体用于将模型编码后的特征进行最终的转换,以输出预测结果。下面我们逐一解释这两个组件的功能和应用场景:

create_pretrain_head 函数

这个函数用于创建一个预训练头(pretrain head),通常在模型的预训练阶段使用,目的是训练模型的一部分或全部来学习特定的任务。这里的实现很简单:

  • 使用一个 nn.Dropout 层来减少过拟合。
  • 接着使用 nn.Conv1d 来进行一维卷积操作,将特征从 head_nf 维转换到 vars 维,其中 vars 可能代表了某种特征或者输出的数量。这里的 nn.Conv1d 使用的卷积核大小为1,意味着它实际上是在执行逐点的线性变换(没有实际的卷积操作),这可以视为一种特殊的线性层。
举例说明:

假设我们的模型经过编码器后,每个特征的维度是128,我们需要将这些特征转换为10个输出类别的概率。在这种情况下,head_nf 可能是128,vars 是10。通过 create_pretrain_head,我们可以得到一个能够将128维特征映射到10维输出的模块。

Flatten_Head

这个类定义了一个网络层,用于处理模型输出,使之适合进行最终预测。根据 individual 参数的不同,这个头部的行为会有所不同:

  • 如果 individualTrue,则为每个变量(特征)单独创建一个输出通道。这种情况下,它会为每个变量使用独立的 nn.Flattennn.Linearnn.Dropout,分别平整化数据、进行线性变换和应用dropout。
  • 如果 individualFalse,则整个输入批次会被一起处理,通过共享的 nn.Flattennn.Linearnn.Dropout 层。
举例说明:

考虑一个场景,我们的模型处理了一个包含多个变量的时间序列数据,每个变量对应一系列补丁(patches),每个补丁经过处理后的特征维度是 d_model。现在,我们需要为每个补丁预测未来的 target_window 大小的时间窗口的值。

  • 如果 individualTrue,对于电力公司监控多个电站的电力输出,可能希望独立预测每个电站的未来电力输出。此时,每个电站(变量)会有独立的模型路径来预测其输出。
  • 如果 individualFalse,假设我们需要预测整个区域的总电力需求,那么可能就会将所有电站的数据合并处理,用一个共同的模型路径来预测总需求。

这两种头部设计都是为了提供灵活的模型输出方式,以适应不同的应用需求和数据特性。

举例解释一下位置编码是如何加入到输入编码中的,还有就是后面的代码的作用

class TSTEncoder(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=None, 
                        norm='BatchNorm', attn_dropout=0., dropout=0., activation='gelu',
                        res_attention=False, n_layers=1, pre_norm=False, store_attn=False):
        super().__init__()

        self.layers = nn.ModuleList([TSTEncoderLayer(q_len, d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm,
                                                      attn_dropout=attn_dropout, dropout=dropout,
                                                      activation=activation, res_attention=res_attention,
                                                      pre_norm=pre_norm, store_attn=store_attn) for i in range(n_layers)])
        self.res_attention = res_attention

    def forward(self, src:Tensor, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
        output = src
        scores = None
        if self.res_attention:
            for mod in self.layers: output, scores = mod(output, prev=scores, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output
        else:
            for mod in self.layers: output = mod(output, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output



class TSTEncoderLayer(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=256, store_attn=False,
                 norm='BatchNorm', attn_dropout=0, dropout=0., bias=True, activation="gelu", res_attention=False, pre_norm=False):
        super().__init__()
        assert not d_model%n_heads, f"d_model ({d_model}) must be divisible by n_heads ({n_heads})"
        d_k = d_model // n_heads if d_k is None else d_k
        d_v = d_model // n_heads if d_v is None else d_v

        # Multi-Head attention
        self.res_attention = res_attention
        self.self_attn = _MultiheadAttention(d_model, n_heads, d_k, d_v, attn_dropout=attn_dropout, proj_dropout=dropout, res_attention=res_attention)

        # Add & Norm
        self.dropout_attn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_attn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_attn = nn.LayerNorm(d_model)

        # Position-wise Feed-Forward
        self.ff = nn.Sequential(nn.Linear(d_model, d_ff, bias=bias),
                                get_activation_fn(activation),
                                nn.Dropout(dropout),
                                nn.Linear(d_ff, d_model, bias=bias))

        # Add & Norm
        self.dropout_ffn = nn.Dropout(dropout)
        if "batch" in norm.lower():
            self.norm_ffn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
        else:
            self.norm_ffn = nn.LayerNorm(d_model)

        self.pre_norm = pre_norm
        self.store_attn = store_attn


    def forward(self, src:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None) -> Tensor:

        # Multi-Head attention sublayer
        if self.pre_norm:
            src = self.norm_attn(src)
        ## Multi-Head attention
        if self.res_attention:
            src2, attn, scores = self.self_attn(src, src, src, prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        else:
            src2, attn = self.self_attn(src, src, src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        if self.store_attn:
            self.attn = attn
        ## Add & Norm
        src = src + self.dropout_attn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_attn(src)

        # Feed-forward sublayer
        if self.pre_norm:
            src = self.norm_ffn(src)
        ## Position-wise Feed-Forward
        src2 = self.ff(src)
        ## Add & Norm
        src = src + self.dropout_ffn(src2) # Add: residual connection with residual dropout
        if not self.pre_norm:
            src = self.norm_ffn(src)

        if self.res_attention:
            return src, scores
        else:
            return src

这段代码定义了一个基于Transformer架构的编码器(TSTEncoder)和编码器层(TSTEncoderLayer),专门用于处理时间序列数据。让我们一步步分析每个组件的功能和工作流程:

TSTEncoder 类

TSTEncoder 类初始化时创建了一个自注意力编码器层的列表,每个层是一个 TSTEncoderLayer 实例。这些层按顺序处理输入数据,实现深度自注意力网络。

  • 参数:
    • q_len: 查询长度,通常代表时间序列的长度或处理的时间步数。
    • d_model: 模型的特征维度。
    • n_heads: 多头注意力中头的数量。
    • d_k, d_v: 分别是每个头的键和值的维度。
    • d_ff: 前馈网络中间层的维度。
    • norm: 选择使用的归一化类型(批归一化或层归一化)。
    • n_layers: 编码器中层的数量。
    • res_attention, pre_norm, store_attn: 各种标志,指示是否使用残差注意力、预归一化和存储注意力权重。

TSTEncoderLayer 类

TSTEncoderLayer 是实现自注意力机制的具体层,包含以下步骤:

  • 多头自注意力 (_MultiheadAttention): 用于计算输入数据中不同位置间的依赖关系。它通过线性变换生成查询(Q)、键(K)和值(V),然后计算注意力分数和输出。
  • 归一化 (norm_attnnorm_ffn): 用于稳定网络训练,可以选择批归一化或层归一化。
  • 前馈网络 (ff): 每个注意力层后有一个前馈网络,包括两个线性变换和一个激活函数,通常是GELU。
  • 残差连接Dropout: 在自注意力和前馈网络后应用,帮助缓解深层网络训练的梯度消失问题。

位置编码

你的代码段中没有直接显示位置编码(W_pos)的加入过程,但通常位置编码在 TSTEncoderforward 方法中添加到输入数据之前。位置编码提供了模型关于输入序列位置的信息,这对于基于注意力的模型是必要的,因为注意力机制本身是不具有顺序感的。位置编码可以是固定的(如正弦波编码)或可学习的(作为模型参数)。加入位置编码的步骤通常如下:

def forward(self, x):
    # 假设 x 是输入数据:[batch_size, seq_length, feature_dim]
    pos_encoding = self.positional_encoding(x)  # 生成或获取位置编码
    x = x + pos_encoding  # 将位置编码加到输入数据上
    ...

整体作用

这些组件结合在一起,使得模型能够处理复杂的时间序列数据,捕捉长距离依赖,同时保持对输入序列中每个时间点的灵敏度。每个编码层通过其自注意力机制学习输入数据的内部结构,而位置编码则帮助模型理解时间步骤之间的顺序关系。这种架构特别适合于处理那些需要对时间动态有深刻理解的任务,如预测未来的时间序列值或分类时间序列事件。

是的,你提供的这段代码正是一个生成位置编码(PositionalEncoding)的函数,它创建了正弦和余弦位置编码,这是在自然语言处理和时间序列分析中常用的一种位置编码方法。这种编码方式最初由《Attention is All You Need》一文中的Transformer模型提出。让我们一步步地解析这个函数:

步骤解析

  1. 初始化编码矩阵

    pe = torch.zeros(q_len, d_model)
    

    这里初始化一个零矩阵 pe,其形状为 [q_len, d_model],其中 q_len 是序列长度,d_model 是模型的维度。

  2. 生成位置索引

    position = torch.arange(0, q_len).unsqueeze(1)
    

    生成一个从0到 q_len-1 的位置索引,并通过 unsqueeze(1) 增加一个维度,使其变为 [q_len, 1]

  3. 计算分母项

    div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
    

    这个表达式计算的是位置编码的分母,用于调整正弦和余弦函数的波长。通过使每个位置的编码频率在不同的维度上呈几何级数递减,可以使模型更容易学习到不同位置的相对关系。

  4. 计算正弦和余弦编码

    pe[:, 0::2] = torch.sin(position * div_term)
    pe[:, 1::2] = torch.cos(position * div_term)
    

    使用正弦函数为偶数索引的维度填充位置编码,使用余弦函数为奇数索引的维度填充位置编码。这样的设置使得每个维度的位置编码都包含位置的周期函数,可以表示不同的频率。

  5. 归一化(可选)

    if normalize:
        pe = pe - pe.mean()
        pe = pe / (pe.std() * 10)
    

    可选的归一化步骤可以帮助稳定训练过程,通过减去均值和除以标准差的方式调整位置编码的尺度。

总结

通过这个函数生成的位置编码可以加到模型的输入上(如前文所述的添加过程),这为模型提供了处理序列数据时位置的重要信息。这种编码方式允许模型捕捉输入中各个位置之间的相对或绝对位置关系,是处理序列数据时一种非常有效的技术。

两个编码器有什么区别

class TSTiEncoder(nn.Module):  #i means channel-independent
    def __init__(self, c_in, patch_num, patch_len, max_seq_len=1024,
                 n_layers=3, d_model=128, n_heads=16, d_k=None, d_v=None,
                 d_ff=256, norm='BatchNorm', attn_dropout=0., dropout=0., act="gelu", store_attn=False,
                 key_padding_mask='auto', padding_var=None, attn_mask=None, res_attention=True, pre_norm=False,
                 pe='zeros', learn_pe=True, verbose=False, **kwargs):
        
        
        super().__init__()
        
        self.patch_num = patch_num
        self.patch_len = patch_len
        
        # Input encoding
        q_len = patch_num
        self.W_P = nn.Linear(patch_len, d_model)        # Eq 1: projection of feature vectors onto a d-dim vector space
        self.seq_len = q_len

        # Positional encoding
        self.W_pos = PositionalEncoding(pe, learn_pe, q_len, d_model)

        # Residual dropout
        self.dropout = nn.Dropout(dropout)

        # Encoder
        self.encoder = TSTEncoder(q_len, d_model, n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout, dropout=dropout,
                                   pre_norm=pre_norm, activation=act, res_attention=res_attention, n_layers=n_layers, store_attn=store_attn)

        
    def forward(self, x) -> Tensor:                                              # x: [bs x nvars x patch_len x patch_num]
        
        n_vars = x.shape[1]
        # Input encoding
        x = x.permute(0,1,3,2)                                                   # x: [bs x nvars x patch_num x patch_len]
        x = self.W_P(x)                                                          # x: [bs x nvars x patch_num x d_model]

        u = torch.reshape(x, (x.shape[0]*x.shape[1],x.shape[2],x.shape[3]))      # u: [bs * nvars x patch_num x d_model]
        u = self.dropout(u + self.W_pos)                                         # u: [bs * nvars x patch_num x d_model]

        # Encoder
        z = self.encoder(u)                                                      # z: [bs * nvars x patch_num x d_model]
        z = torch.reshape(z, (-1,n_vars,z.shape[-2],z.shape[-1]))                # z: [bs x nvars x patch_num x d_model]
        z = z.permute(0,1,3,2)                                                   # z: [bs x nvars x d_model x patch_num]
        
        return z    
            
            
    
# Cell
class TSTEncoder(nn.Module):
    def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=None, 
                        norm='BatchNorm', attn_dropout=0., dropout=0., activation='gelu',
                        res_attention=False, n_layers=1, pre_norm=False, store_attn=False):
        super().__init__()

        self.layers = nn.ModuleList([TSTEncoderLayer(q_len, d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm,
                                                      attn_dropout=attn_dropout, dropout=dropout,
                                                      activation=activation, res_attention=res_attention,
                                                      pre_norm=pre_norm, store_attn=store_attn) for i in range(n_layers)])
        self.res_attention = res_attention

    def forward(self, src:Tensor, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
        output = src
        scores = None
        if self.res_attention:
            for mod in self.layers: output, scores = mod(output, prev=scores, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output
        else:
            for mod in self.layers: output = mod(output, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
            return output

你提供的代码包含了两个编码器类:TSTiEncoderTSTEncoder。这两个编码器在设计上有一些关键的区别,主要体现在它们处理输入数据和配置的方式上。下面我们详细比较这两个编码器:

TSTiEncoder 类

TSTiEncoder 是为处理多变量时间序列数据而设计的编码器。它包括对输入数据的预处理、位置编码的添加以及自定义编码器的使用。

  • 特点和功能
    • 输入处理:这个编码器接收形状为 [bs, nvars, patch_len, patch_num] 的输入数据,其中 bs 是批次大小,nvars 是变量数,patch_len 是每个patch的长度,patch_num 是patch的数量。输入首先按维度重排,并通过一个线性层 (W_P) 投影到 d_model 维度空间。
    • 位置编码:根据构造函数中的 pelearn_pe 参数,可以动态生成位置编码或使用固定的编码方式。位置编码被添加到线性变换后的输入上。
    • 自注意力编码:使用 TSTEncoder 类作为编码器的主体,它具备多头注意力机制,并可以配置残差注意力、预归一化等特性。

TSTEncoder 类

TSTEncoder 是一个更通用的自注意力编码器,可以用作 TSTiEncoder 的组成部分,也可以单独用于其他应用。

  • 特点和功能
    • 层的堆叠:根据指定的层数 (n_layers),它创建了一个自注意力层的列表,每一层都是 TSTEncoderLayer 的实例。
    • 处理逻辑:在前向传播过程中,它将输入逐层传递,每一层都可以选择是否使用残差注意力。如果启用残差注意力,每层的输出都会依赖于前一层的注意力分数。

主要区别

  • 定制化TSTiEncoder 针对特定的输入格式和处理需求进行了定制化设计,包括输入的预处理和位置编码的集成。而 TSTEncoder 则是一个更为通用的编码器,侧重于构建可配置的多头注意力编码层。
  • 位置编码TSTiEncoder 中明确包含了位置编码的生成和应用,而 TSTEncoder 没有直接涉及位置编码的处理,其位置编码需要在外部生成并应用。
  • 应用范围TSTiEncoder 特别适用于处理形状为 [bs, nvars, patch_len, patch_num] 的多变量时间序列数据,而 TSTEncoder 则更为通用,可以应用于任何需要自注意力处理的场景。

这样的设计使得 TSTiEncoder 特别适合在特定的时间序列分析任务中使用,而 TSTEncoder 提供了更广泛的应用可能性。

举例说明一下TSTiEncoder是如何对数据进行编码的?

TSTiEncoder 是一个特别为处理多变量时间序列数据设计的编码器,其处理过程涉及多个步骤,包括数据预处理、特征投影、位置编码添加和通过自注意力编码器进行深度编码。以下是 TSTiEncoder 如何对数据进行编码的详细说明和示例:

输入数据

假设输入数据 x 的形状为 [bs, nvars, patch_len, patch_num],其中:

  • bs 是批次大小。
  • nvars 是变量的数量(例如,多个传感器的读数)。
  • patch_len 是每个数据块(或"patch")中的时间点数量。
  • patch_num 是每个样本中的数据块数量。

处理步骤

  1. 重排输入数据

    • 输入数据首先在最后两个维度进行转置,使得数据块的数量(patch_num)和每个数据块的长度(patch_len)互换位置,从而变为 [bs, nvars, patch_num, patch_len]
  2. 线性投影

    • 使用一个线性层 W_P 对输入的每个数据块进行特征投影。这个线性层将每个数据块的长度从 patch_len 映射到模型的特征维度 d_model。转换后的数据形状变为 [bs, nvars, patch_num, d_model]
  3. 添加位置编码

    • 生成或获取位置编码 W_pos,其维度与处理后的数据匹配 ([patch_num, d_model])。这个位置编码为每个数据块提供唯一的位置信息,帮助模型捕捉序列中的顺序依赖。
    • 位置编码被加到处理后的数据上,确保每个时间步的特征都包含位置信息。
  4. 应用编码器

    • 处理后的数据 u 被传递到一个自注意力编码器(TSTEncoder),该编码器包含多个自注意力层,能够深入分析时间序列数据中的复杂模式和依赖关系。
    • 编码器的输入维度是 [bs * nvars, patch_num, d_model],即将批次大小和变量数合并为一个维度,以独立处理每个变量。
  5. 重塑和排列输出

    • 编码器的输出被重塑回 [bs, nvars, patch_num, d_model],保持每个变量的输出独立。
    • 最后,输出数据在最后两个维度进行转置,变为 [bs, nvars, d_model, patch_num]

示例

假设有一个批次大小为 2,3 个变量,每个样本包含 5 个数据块,每个数据块有 10 个时间点的输入数据。那么 TSTiEncoder 的处理流程如下:

  1. 输入形状:[2, 3, 10, 5](经过维度转换)
  2. 经过线性层后的形状:[2, 3, 5, 128](如果 d_model = 128
  3. 添加位置编码后的形状不变,但每个数据块包含位置信息。
  4. 编码器处理后,输出形状为:[2, 3, 128, 5](最终输出)

这样的编码器特别适合处理那些变量之间相互独立,每个变量序列需要单独分析的多变量时间序列数据。

解释这两个注意力计算机制,并举个例子说明一下

class _MultiheadAttention(nn.Module):
    def __init__(self, d_model, n_heads, d_k=None, d_v=None, res_attention=False, attn_dropout=0., proj_dropout=0., qkv_bias=True, lsa=False):
        """Multi Head Attention Layer
        Input shape:
            Q:       [batch_size (bs) x max_q_len x d_model]
            K, V:    [batch_size (bs) x q_len x d_model]
            mask:    [q_len x q_len]
        """
        super().__init__()
        d_k = d_model // n_heads if d_k is None else d_k
        d_v = d_model // n_heads if d_v is None else d_v

        self.n_heads, self.d_k, self.d_v = n_heads, d_k, d_v

        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=qkv_bias)

        # Scaled Dot-Product Attention (multiple heads)
        self.res_attention = res_attention
        self.sdp_attn = _ScaledDotProductAttention(d_model, n_heads, attn_dropout=attn_dropout, res_attention=self.res_attention, lsa=lsa)

        # Poject output
        self.to_out = nn.Sequential(nn.Linear(n_heads * d_v, d_model), nn.Dropout(proj_dropout))


    def forward(self, Q:Tensor, K:Optional[Tensor]=None, V:Optional[Tensor]=None, prev:Optional[Tensor]=None,
                key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):

        bs = Q.size(0)
        if K is None: K = Q
        if V is None: V = Q

        # Linear (+ split in multiple heads)
        q_s = self.W_Q(Q).view(bs, -1, self.n_heads, self.d_k).transpose(1,2)       # q_s    : [bs x n_heads x max_q_len x d_k]
        k_s = self.W_K(K).view(bs, -1, self.n_heads, self.d_k).permute(0,2,3,1)     # k_s    : [bs x n_heads x d_k x q_len] - transpose(1,2) + transpose(2,3)
        v_s = self.W_V(V).view(bs, -1, self.n_heads, self.d_v).transpose(1,2)       # v_s    : [bs x n_heads x q_len x d_v]

        # Apply Scaled Dot-Product Attention (multiple heads)
        if self.res_attention:
            output, attn_weights, attn_scores = self.sdp_attn(q_s, k_s, v_s, prev=prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        else:
            output, attn_weights = self.sdp_attn(q_s, k_s, v_s, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
        # output: [bs x n_heads x q_len x d_v], attn: [bs x n_heads x q_len x q_len], scores: [bs x n_heads x max_q_len x q_len]

        # back to the original inputs dimensions
        output = output.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * self.d_v) # output: [bs x q_len x n_heads * d_v]
        output = self.to_out(output)

        if self.res_attention: return output, attn_weights, attn_scores
        else: return output, attn_weights


class _ScaledDotProductAttention(nn.Module):
    r"""Scaled Dot-Product Attention module (Attention is all you need by Vaswani et al., 2017) with optional residual attention from previous layer
    (Realformer: Transformer likes residual attention by He et al, 2020) and locality self sttention (Vision Transformer for Small-Size Datasets
    by Lee et al, 2021)"""

    def __init__(self, d_model, n_heads, attn_dropout=0., res_attention=False, lsa=False):
        super().__init__()
        self.attn_dropout = nn.Dropout(attn_dropout)
        self.res_attention = res_attention
        head_dim = d_model // n_heads
        self.scale = nn.Parameter(torch.tensor(head_dim ** -0.5), requires_grad=lsa)
        self.lsa = lsa

    def forward(self, q:Tensor, k:Tensor, v:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
        '''
        Input shape:
            q               : [bs x n_heads x max_q_len x d_k]
            k               : [bs x n_heads x d_k x seq_len]
            v               : [bs x n_heads x seq_len x d_v]
            prev            : [bs x n_heads x q_len x seq_len]
            key_padding_mask: [bs x seq_len]
            attn_mask       : [1 x seq_len x seq_len]
        Output shape:
            output:  [bs x n_heads x q_len x d_v]
            attn   : [bs x n_heads x q_len x seq_len]
            scores : [bs x n_heads x q_len x seq_len]
        '''

        # Scaled MatMul (q, k) - similarity scores for all pairs of positions in an input sequence
        attn_scores = torch.matmul(q, k) * self.scale      # attn_scores : [bs x n_heads x max_q_len x q_len]

        # Add pre-softmax attention scores from the previous layer (optional)
        if prev is not None: attn_scores = attn_scores + prev

        # Attention mask (optional)
        if attn_mask is not None:                                     # attn_mask with shape [q_len x seq_len] - only used when q_len == seq_len
            if attn_mask.dtype == torch.bool:
                attn_scores.masked_fill_(attn_mask, -np.inf)
            else:
                attn_scores += attn_mask

        # Key padding mask (optional)
        if key_padding_mask is not None:                              # mask with shape [bs x q_len] (only when max_w_len == q_len)
            attn_scores.masked_fill_(key_padding_mask.unsqueeze(1).unsqueeze(2), -np.inf)

        # normalize the attention weights
        attn_weights = F.softmax(attn_scores, dim=-1)                 # attn_weights   : [bs x n_heads x max_q_len x q_len]
        attn_weights = self.attn_dropout(attn_weights)

        # compute the new values given the attention weights
        output = torch.matmul(attn_weights, v)                        # output: [bs x n_heads x max_q_len x d_v]

        if self.res_attention: return output, attn_weights, attn_scores
        else: return output, attn_weights

在提供的代码中,你有两个关键的组件:_MultiheadAttention_ScaledDotProductAttention。这两个类共同工作来实现多头自注意力机制,是Transformer模型的核心组成部分。

_MultiheadAttention 类

这个类实现了多头自注意力机制,其步骤包括:

  1. 线性变换生成 Q, K, V

    • 使用三个独立的线性层将输入向量转换成查询(Q)、键(K)和值(V)向量。每个向量被分成多个头,每个头处理一部分信息。
  2. 调用 _ScaledDotProductAttention

    • 这个子模块处理每个头的 Q, K, V,计算输出和注意力权重。
  3. 输出重新组合

    • 将所有头的输出重新组合成原始的特征维度大小,并通过一个线性层进行最终的输出投影。

_ScaledDotProductAttention 类

这个类实现了缩放点积注意力计算,是多头自注意力的核心部分,其步骤包括:

  1. 计算注意力分数

    • 通过计算 Q 和 K 的点积得到原始的注意力分数,然后乘以缩放因子(由特征维度的平方根的倒数给出)。
  2. 可选的残差注意力和局部自注意力

    • 如果启用,从上一层的注意力分数可以加到当前层的分数上(实现残差连接)。
    • 可以应用局部自注意力或注意力掩码来限制或改变注意力分布。
  3. 应用 softmax 标准化

    • 对注意力分数应用 softmax 函数,得到最终的注意力权重。
  4. 计算输出

    • 通过权重加权 V 来得到输出。

示例说明

假设我们有一个输入数据,其形状为 [bs, seq_len, d_model],其中 bs 是批大小,seq_len 是序列长度,d_model 是特征维度。设定 n_heads 为 4,因此每个头处理的维度是 d_model / 4

处理流程
  1. 输入通过三个线性层,被分别转换为 Q, K, V,每个的形状为 [bs, seq_len, d_model]
  2. Q, K, V 被切分为多个头,每个头的维度减半,形状变为 [bs, n_heads, seq_len, d_model/n_heads]
  3. 对于每个头,Q 和 K 进行缩放点积,计算注意力分数,然后通过 softmax 函数转换为注意力权重。
  4. 使用注意力权重对 V 进行加权,得到每个头的输出。
  5. 所有头的输出合并,并通过最终的线性层进行投影,以恢复到原始的特征维度 [bs, seq_len, d_model]
例子

如果有一个批次大小为 2,序列长度为 10,特征维度为 128 的输入,设置 4 个头,每个头处理 32 维特征。在多头自注意力处理后,模型能够更好地捕捉不同位置之间的依赖关系,对于如机器翻译、文本摘要等 NLP 任务至关重要。

CausalSelfAttention和ScaledDotProductAttention有什么区别

class CausalSelfAttention(nn.Module):
    """
    A vanilla multi-head masked self-attention layer with a projection at the end.
    It is possible to use torch.nn.MultiheadAttention here but I am including an
    explicit implementation here to show that there is nothing too scary here.
    """

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads
        self.key = nn.Linear(config.n_embd, config.n_embd)
        self.query = nn.Linear(config.n_embd, config.n_embd)
        self.value = nn.Linear(config.n_embd, config.n_embd)
        # regularization
        self.attn_drop = nn.Dropout(config.attn_pdrop)
        self.resid_drop = nn.Dropout(config.resid_pdrop)
        # output projection
        self.proj = nn.Linear(config.n_embd, config.n_embd)
        # causal mask to ensure that attention is only applied to the left in the input sequence
        self.register_buffer("mask", torch.tril(torch.ones(config.max_seqlen, config.max_seqlen))
                                     .view(1, 1, config.max_seqlen, config.max_seqlen))
        self.n_head = config.n_head

    def forward(self, x, layer_past=None):
        B, T, C = x.size()

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        return y

在您提供的代码中,CausalSelfAttention 是一个实现因果(或屏蔽)自注意力的类,这种注意力机制通常用于生成任务,如语言模型,其中每个输出仅依赖于先前的输入,不依赖于未来的输入。与 _ScaledDotProductAttention 的主要区别在于注意力屏蔽机制、结构和一些实现细节。

主要区别

  1. 注意力屏蔽 (Causal Masking):

    • CausalSelfAttention: 使用因果掩码确保每个位置的输出仅依赖于该位置之前的输入。这是通过使用一个下三角矩阵作为掩码实现的,其中非零的位置允许注意力,零位置则强制注意力权重为负无穷(即在 softmax 之前)。
    • _ScaledDotProductAttention: 通常不包括因果掩码,但支持通用的注意力掩码(attn_mask),可以用于实现不同类型的掩蔽策略。
  2. 实现细节:

    • CausalSelfAttention: 明确地为所有头分别计算查询(Q)、键(K)和值(V),并在内部处理因果掩码和多头组合。
    • _ScaledDotProductAttention: 更为一般,侧重于实现基本的缩放点积注意力计算,不直接包括多头处理,需要外部代码管理多头的拆分和组合。
  3. 多头处理:

    • CausalSelfAttention: 在类内部处理多头的拆分,通过改变张量的形状将头维度移至批次维度前,以简化头间的矩阵乘法运算。
    • _ScaledDotProductAttention: 处理单头注意力的计算,假设输入已经正确拆分为多头。
  4. 性能和灵活性:

    • CausalSelfAttention: 通过集成所有必要的步骤(如Q, K, V的计算、注意力的应用、输出的投影)来优化特定类型的自注意力(因果自注意力),这对于特定任务(如生成模型)可能更有效。
    • _ScaledDotProductAttention: 提供基本的注意力机制实现,可以灵活适用于多种类型的自注意力需求,但需要更多的外部控制来实现特定行为(如多头处理或特殊掩码应用)。

结论

CausalSelfAttention 特别适合于需要序列生成的任务,其中每个输出元素仅依赖于之前的元素,如文本生成或音乐生成。它内部管理多头注意力和因果掩码,为此类任务提供了一种高效的实现方式。

相比之下,_ScaledDotProductAttention 更为通用,提供了执行基础自注意力机制的核心功能,适用于多种不同的应用,但需要额外的逻辑来处理例如多头拆分和特定掩码的应用等功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值