5、线性代数与快速傅里叶变换:稀疏矩阵、迭代方法及FFT详解

线性代数与快速傅里叶变换:稀疏矩阵、迭代方法及FFT详解

1. 求解泊松方程的迭代步骤

在求解泊松方程时,不同的预条件子和网格大小会影响迭代步骤。以下是在31x31和63x63网格上,以相对残差精度为10⁻⁶求解泊松方程的迭代步骤表格:
| 预条件子 | n = 31 | n = 63 |
| — | — | — |
| Jacobi | 76 | 149 |
| Block Jacobi | 57 | 110 |
| Symmetric Gauss - Seidel | 33 | 58 |
| Symmetric block Gauss - Seidel | 22 | 39 |
| SSOR (w = 1.8) | 18 | 26 |
| Block SSOR (w = 1.8) | 15 | 21 |

从表格中可以看出,随着网格大小的增加,迭代步骤通常会增多。不同的预条件子对迭代步骤的影响也很明显,例如Block SSOR在两种网格大小下的迭代步骤相对较少,表现较好。

2. 并行化

PCG和GMRES中最耗时的部分是系统矩阵A的矩阵 - 向量乘法以及用预条件子M求解线性系统。当向量分布在连接较弱的内存中时,内积和向量范数的计算也会变得昂贵。因此,需要对这三个关键操作进行并行化。
假设稀疏矩阵按块行分布在处理器上,相应地,向量也按块分布。矩阵的行和列编号会强烈影响PCG和GMRES中关键操作的并行性。

3. 稀疏矩阵向量积
3.1 存储格式

稀疏矩阵有多种存储方式,这里主要介绍流行的压缩稀疏行(CS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值