[置顶] 機器學習基石(Machine Learning Foundations) 机器学习基石 课后习题链接汇总

标签: C++实现 机器学习 Machine Learning Fou 機器學習基石 NTU
22580人阅读 评论(17) 收藏 举报
分类:
        大家好,我是Mac Jiang,很高兴您能在百忙之中阅读我的博客!这个专题我主要讲的是Coursera-台湾大学-機器學習基石(Machine Learning Foundations)的课后习题解答。笔者是在学习了Ng的Machine Learning之后开始学习这门课程的,但还是感觉收获颇丰。Ng的课程主要站在计算机专业的角度,教你如何使用机器学习,注重方法而不是数学推导,是一门很好的入门教程;而林轩田老师的机器学习基石是站在统计分析角度,证明机器学习算法为什么要这么做,更加注重于理论的证明,如果你想更加深入了解机器学习,或者想自己编写机器学习算法的,学习这门课还是很有必要的!

        首先声明,笔者在这里提供一些作业解答的目的不是为了让你得到更高的分数,而是对一些学习上有困难的同学提供一些帮助。笔者的目的是提供一种可行的思路,但是说实话,这里面很多题目笔者也没能够理解。在每次做完作业后都感觉有各种问题,但是在百度,google上又找不到相应解答,这是一位初学学者莫大的痛苦,所以开贴为读者带来一些个人的见解,所以如果各位博友发现任何错误或者有更好的思考方法,请留言联系,谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习、理解课程的途径!


1.作业一

(1)作业一课后习题解答:http://blog.csdn.net/a1015553840/article/details/50986313

(2)作业一Q15-17 C++实现(PLA) http://blog.csdn.net/a1015553840/article/details/50979434

(2)作业一Q18-20 C++实现(Pocket PLA)http://blog.csdn.net/a1015553840/article/details/50979640


2.作业二

(1)作业二课后习题解答:http://blog.csdn.net/a1015553840/article/details/51043019

(2)作业二Q16-18 C++实现:http://blog.csdn.net/a1015553840/article/details/51023193

(3)作业二Q19-20 C++实现:http://blog.csdn.net/a1015553840/article/details/51029765


3.作业三

(1)作业三课后习题解答:http://blog.csdn.net/a1015553840/article/details/51103645

(2)作业三Q13-15 C++实现(Linear Regression):http://blog.csdn.net/a1015553840/article/details/51085094

(3)作业三Q18-20 C++实现(Logistic Regression):http://blog.csdn.net/a1015553840/article/details/51085835


4.作业四

(1)作业四课后习题解答:http://blog.csdn.net/a1015553840/article/details/51173679

(2)作业四Q13-15 MATLAB实现(Regularization+Validation):http://blog.csdn.net/a1015553840/article/details/51173020


机器学习基石手写笔记:http://download.csdn.net/detail/a1015553840/9569739 免下载券


关于adaboost的一些个人理解:http://blog.csdn.net/a1015553840/article/details/54882398



查看评论

機器學習基石 机器学习基石(Machine Learning Foundations) 作业1 习题解答

大家好,我是Mac Jiang,今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业1的习题解答。笔者是在学习了Ng的Machine ...
  • a1015553840
  • a1015553840
  • 2016年03月26日 12:56
  • 12453

《机器学习基石》作业一

已入机器学习坑,下决心走下去。《统计学习方法》一书介绍了十种算法,不算太难,但仍需重读以仔细研究其中的推导。《机器学习实战》一书则给出了各种算法的具体实例,Python实现,适合入门者了解算法的具体应...
  • MajorDong100
  • MajorDong100
  • 2016年03月24日 10:08
  • 3013

机器学习基石 作业1 实现PLA和Pocket算法

使用numpy计算一个向量自加的时候遇到了奇怪的bug,W += X会改变另一个向量W_p的值,而W = W + X却没这个问题,无法理解。 #!/usr/bin/env python # -*- c...
  • u012410654
  • u012410654
  • 2015年10月06日 16:02
  • 2792

機器學習基石(Machine Learning Foundations) 机器学习基石 作业三 课后习题解答

今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答。笔者在做这些题目时遇到很多困难,当我在网上寻找答案时却找不到,而林老...
  • a1015553840
  • a1015553840
  • 2016年04月09日 10:22
  • 3942

機器學習基石(Machine Learning Foundations) 机器学习基石 作业二 课后习题解答

大家好,我是Mac Jiang,首先祝贺大家清明节快乐!作为一名苦逼的程序员,博主只能窝在实验室玩玩游戏,顺便趁着大早上没人发一篇微博。不过还是祝各位出行的兄弟玩的开心!         今天和大家分...
  • a1015553840
  • a1015553840
  • 2016年04月02日 10:54
  • 6272

机器学习基石第一讲:the learning problem

博客已经迁移至Marcovaldo’s blog (http://marcovaldong.github.io/)Andrew Ng的Machine Learning比较简单,已经看完。林田轩的机器学...
  • MajorDong100
  • MajorDong100
  • 2016年04月18日 09:44
  • 4522

机器学习基石电子版笔记

  • 2017年10月28日 09:05
  • 3.37MB
  • 下载

机器学习基石第四讲:feasibility of learning

博客已经迁移至Marcovaldo’s blog (http://marcovaldong.github.io/)刚刚完成机器学习基石的第四节,这一节讨论机器学习的可行性,用到了Hoeffding’s...
  • MajorDong100
  • MajorDong100
  • 2016年04月20日 13:46
  • 4810

Foundations of Machine Learning 内容整理 —— Introduction

Foundation of Machine Learning 内容整理 —— Introduction 这是一只小白学习 machine learning 的笔记,发布的主要目的是督促自己不要偷懒,同...
  • yumiwawa19960506
  • yumiwawa19960506
  • 2017年05月22日 15:35
  • 459

Foundation of Machine Learning 笔记第一部分——PAC学习框架

本文翻译自《Foundation of Machine Learning》第二章2.1节。 主要内容是定义了PAC学习框架。...
  • u010185894
  • u010185894
  • 2017年03月02日 22:04
  • 783
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 12万+
    积分: 1553
    排名: 3万+
    博客专栏
    文章存档
    最新评论