機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 课后习题解答

本文详细解答了机器学习基石课程作业四的全部问题,涉及目标函数、错误率、正则化等多个概念,通过实例解析了固定噪声、交叉验证、幸存者偏差等关键点,并探讨了样本污染对泛化能力的影响。
摘要由CSDN通过智能技术生成
   大家好,我是Mac Jiang,今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四的习题解答。笔者在做这些题目时遇到很多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目如何思考的写下来,为大家提供一些思路。当然,我对题目的理解不一定是正确的,如果各位博友发现错误请及时留言联系,谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习、理解课程的途径!希望我的博客对您的学习有所帮助!

本文出处:http://blog.csdn.net/a1015553840/article/details/51173679

其他作业解析请看汇总贴:http://blog.csdn.net/a1015553840/article/details/51085129


1.第一题

(1)题意:利用hyphothesis set H的时候有一个deterministic noise(固定噪声),如果用一个更小的hyphothesis set H',那么固定噪声是增大了还是减小了?

(2)分析:首先我们要知道什么是固定噪声

固定噪声是由于target function f 本身Qf太大造成的。若f本身的Qf太大,那么用h去拟合这种高次的目标函数是不容易的,所以固定噪声大。当我们用更小的H‘代替H来拟合f的时候,由于H’更加小,那么对f的拟合程度更加不好,所以deter

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值