四边形不等式(dp优化)应用及证明(石子合并n^2)

石子合并是一道很经典的区间动规。

在n^3的暴力里面,我们的状态转移方程是:

f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+w[i][j]) f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ i ] [ k ] + f [ k + 1 ] [ j ] + w [ i ] [ j ] )

现在我们有一种很牛逼的优化,可以把石子合并优化到接近O(n^2)

四边形不等式

我们先来看满足四边形不等式的条件:若 a<b<=c<d a < b <= c < d
如果有 w[a][c]+w[b][d]<=w[a][d]+w[b][c] w [ a ] [ c ] + w [ b ] [ d ] <= w [ a ] [ d ] + w [ b ] [ c ] (交叉小于包含)(凸四边形不等式)
那么满足四边形不等式优化。

定理1:如果w满足凸四边形不等式,那么f也满足凸四边形不等式
定理2:如果f满足凸四边形不等式,我们定义 s[i][j] s [ i ] [ j ] f[i][j] f [ i ] [ j ] 在状态转移时取得k为最优,那么 s[i][j]=k s [ i ] [ j ] = k ,此时是 s[i][j] s [ i ] [ j ] 满足决策单调性,也就是 s[i][j1]<=s[i][j]<=s[i+1][j] s [ i ] [ j − 1 ] <= s [ i ] [ j ] <= s [ i + 1 ] [ j ]

首先我们先跳过定理的证明(假装我们明白了这些定理的证明咳咳咳),来看看如何通过定理来优化。

既然知道了这个定理,那我们就可以优化掉原本k的那一层循环,转化为优美的O(n^2)啦

代码:

    for(int l=3;l<=n;++l)
     for(int i=1;i<=n-l+1;++i)
      {
        int j=i+l-1;
        dp[i][j]=INF;
        for(int k=s[i][j-1];k<=s[i+1][j];++k) 
         if((dp[i][k]+dp[k+1][j]+a[j]-a[i-1])<dp[i][j])
          s[i][j]=k,dp[i][j]=dp[i][k]+dp[k+1][j]+a[j]-a[i-1];
      }

ps:O(n)预处理出s[i][i+1]与dp[i][i+1]

简单证明

下面我们来证明几个定理。
假设我们已经证明出了 w[a][c]+w[b][d]<=w[a][d]+w[b][c]a<b<=c<d w [ a ] [ c ] + w [ b ] [ d ] <= w [ a ] [ d ] + w [ b ] [ c ] ( a < b <= c < d )
现在我们来推导f函数也满足四边形不等式。
假设 s[a][d]=s,s[b][c]=t s [ a ] [ d ] = s , s [ b ] [ c ] = t
由于对称性,我们可以假设 s<t s < t (也就是说反过来也可以)
那么我们可以得到 s+1<t+1<c<d s + 1 < t + 1 < c < d
那么
f[a][c]+f[b][d]<=f[a][s]+f[s+1][c]+w[a][c]+f[b][t]+f[t+1][d]+w[b][d] f [ a ] [ c ] + f [ b ] [ d ] <= f [ a ] [ s ] + f [ s + 1 ] [ c ] + w [ a ] [ c ] + f [ b ] [ t ] + f [ t + 1 ] [ d ] + w [ b ] [ d ]
<=f[a][s]+f[s+1][c]+f[b][t]+f[t+1][d]+w[a][d]+w[b][c] <= f [ a ] [ s ] + f [ s + 1 ] [ c ] + f [ b ] [ t ] + f [ t + 1 ] [ d ] + w [ a ] [ d ] + w [ b ] [ c ] <script type="math/tex" id="MathJax-Element-147"><=f[a][s]+f[s+1][c]+f[b][t]+f[t+1][d]+w[a][d]+w[b][c]</script>
<=f[a][s]+f[t+1][c]+f[b][t]+f[z+1][d]+w[a][d]+w[b][c] <= f [ a ] [ s ] + f [ t + 1 ] [ c ] + f [ b ] [ t ] + f [ z + 1 ] [ d ] + w [ a ] [ d ] + w [ b ] [ c ] <script type="math/tex" id="MathJax-Element-148"><=f[a][s]+f[t+1][c]+f[b][t]+f[z+1][d]+w[a][d]+w[b][c]</script>(用了数学归纳法)
<=f[a][d]+f[b][c] <= f [ a ] [ d ] + f [ b ] [ c ] <script type="math/tex" id="MathJax-Element-149"><=f[a][d]+f[b][c]</script>

得证。

那么我们再来证明定理2 也就是 s[i][j] s [ i ] [ j ] 满足决策单调性

fk[i,j]=f[i,k]+f[k,j]s[i,j]=d f k [ i , j ] = f [ i , k ] + f [ k , j ] , s [ i , j ] = d
mk[i+1,j]md[i+1,j])(mk[i,j]md[i,j]) m k [ i + 1 , j ] − m d [ i + 1 , j ] ) − ( m k [ i , j ] − m d [ i , j ] )
=(mk[i+1,j]+md[i,j])(md[i+1,j]+mk[i,j]) = ( m k [ i + 1 , j ] + m d [ i , j ] ) − ( m d [ i + 1 , j ] + m k [ i , j ] )
=(m[i+1,k]+m[k,j]+m[i,d]+m[d,j])(m[i+1,d]+m[d,j]+m[i,k]+m[k,j]) = ( m [ i + 1 , k ] + m [ k , j ] + m [ i , d ] + m [ d , j ] ) − ( m [ i + 1 , d ] + m [ d , j ] + m [ i , k ] + m [ k , j ] )
=(m[i+1,k]+m[i,d])(m[i+1,d]+m[i,k]) = ( m [ i + 1 , k ] + m [ i , d ] ) − ( m [ i + 1 , d ] + m [ i , k ] )
∵m满足四边形不等式
∴对于 i<i+1k<d i < i + 1 ≤ k < d m[i+1,k]+m[i,d]m[i+1,d]+m[i,k] m [ i + 1 , k ] + m [ i , d ] ≥ m [ i + 1 , d ] + m [ i , k ]
(mk[i+1,j]md[i+1,j])(mk[i,j]md[i,j])0 ( m k [ i + 1 , j ] − m d [ i + 1 , j ] ) ≥ ( m k [ i , j ] − m d [ i , j ] ) ≥ 0
s[i,j]s[i+1,j] s [ i , j ] ≤ s [ i + 1 , j ] ,同理可证 s[i,j1]s[i,j] s [ i , j − 1 ] ≤ s [ i , j ]

证毕

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值