Problem
从数列A[0], A[1], A[2], …, A[N-1]中选若干个数,要求对于每个i(0<=i < N-1),A[i]和A[i+1]至少选一个数,求能选出的最小和.
1 <= N <= 100000, 1 <= A[i] <= 1000
请为下面的Solution类实现解决上述问题的函数minSum,函数参数A是给出的数列,返回值为所求的最小和.
例1:A = {2, 5, 2},答案为4.
例2:A = {2, 5, 4},答案为5.
思路
- 当数组只有一个元素时,直接返回第一个元素;
- 当数组有两个元素,返回最下的一个;
- 数组有三个或以上元素时,设置数组S,若序号为i,则S[i]表示以数组第i个元素结尾的最小和。
对于数列 1 2 3 4 5 6
设
S[0] = a[0];
S[1] = a[1];
S[2]为以3结尾的最小和,很明显,序列要么是 1 3 要么是 2 3
同理,S[3]是以4结尾的最小和,序列选择有:
1 2 4
1 3 4
2 3 4
2 4
显然,2 4 是最小和序列
由于题目规则,在第 i、i+1个元素中,必须选择一个,所以,在算第i个元素结尾的最小和时,i-1、i-2中的一个元素必须被选择,所以第i个元素的最小和等于以i-1或i-2结尾的元素的最小和加上本身。存在以下规律
S[i] = min(S[i-2] + a[2] + S[i-1] + a[2]) i >= 3
Code
class Solution {
public:
int minSum(vector<int>& A) {
if (A.size() == 1)
return A[0];
int *S = new int[A.size()];
S[0] = A[0];
S[1] = A[1];
for (int i = 2; i < A.size(); i++) {
S[i] = min(S[i-1] + A[i], S[i-2] + A[i]);
}
return min(S[A.size()-1, A.size()-2]);
}
};