Prince and Princess
Input: Standard Input
Output: Standard Output
Time Limit: 3 Seconds
In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below:
Prince stands in square 1, make p jumps and finally reach square n*n. He enters a square at most once. So if we use xp to denote the p-th square he enters, then x1, x2, ... xp+1 are all different. Note that x1 = 1 and xp+1 = n*n. Princess does the similar thing - stands in square 1, make q jumps and finally reach square n*n. We use y1, y2 , ... yq+1 to denote the sequence, and all q+1 numbers are different.
Figure 2 belows show a 3x3 square, a possible route for Prince and a different route for Princess.
The Prince moves along the sequence: 1 --> 7 --> 5 --> 4 --> 8 --> 3 --> 9 (Black arrows), while the Princess moves along this sequence: 1 --> 4 --> 3 --> 5 --> 6 --> 2 --> 8 --> 9 (White arrow).
The King -- their father, has just come. "Why move separately? You are brother and sister!" said the King, "Ignore some jumps and make sure that you're always together."
For example, if the Prince ignores his 2nd, 3rd, 6th jump, he'll follow the route: 1 --> 4 --> 8 --> 9. If the Princess ignores her 3rd, 4th, 5th, 6th jump, she'll follow the same route: 1 --> 4 --> 8 --> 9, (The common route is shown in figure 3) thus satisfies the King, shown above. The King wants to know the longest route they can move together, could you tell him?
Input
The first line of the input contains a single integer t(1 <= t <= 10), the number of test cases followed. For each case, the first line contains three integers n, p, q(2 <= n <= 250, 1 <= p, q < n*n). The second line contains p+1 different integers in the range [1..n*n], the sequence of the Prince. The third line contains q+1 different integers in the range [1..n*n], the sequence of the Princess.
Output
For each test case, print the case number and the length of longest route. Look at the output for sample input for details.
Sample Input
1
3 6 7
1 7 5 4 8 3 9
1 4 3 5 6 2 8 9
Input: Standard Input
Output: Standard Output
Time Limit: 3 Seconds
In an n x n chessboard, Prince and Princess plays a game. The squares in the chessboard are numbered 1, 2, 3 ... n*n, as shown below:
Prince stands in square 1, make p jumps and finally reach square n*n. He enters a square at most once. So if we use xp to denote the p-th square he enters, then x1, x2, ... xp+1 are all different. Note that x1 = 1 and xp+1 = n*n. Princess does the similar thing - stands in square 1, make q jumps and finally reach square n*n. We use y1, y2 , ... yq+1 to denote the sequence, and all q+1 numbers are different.
Figure 2 belows show a 3x3 square, a possible route for Prince and a different route for Princess.
The Prince moves along the sequence: 1 --> 7 --> 5 --> 4 --> 8 --> 3 --> 9 (Black arrows), while the Princess moves along this sequence: 1 --> 4 --> 3 --> 5 --> 6 --> 2 --> 8 --> 9 (White arrow).
The King -- their father, has just come. "Why move separately? You are brother and sister!" said the King, "Ignore some jumps and make sure that you're always together."
For example, if the Prince ignores his 2nd, 3rd, 6th jump, he'll follow the route: 1 --> 4 --> 8 --> 9. If the Princess ignores her 3rd, 4th, 5th, 6th jump, she'll follow the same route: 1 --> 4 --> 8 --> 9, (The common route is shown in figure 3) thus satisfies the King, shown above. The King wants to know the longest route they can move together, could you tell him?
Input
The first line of the input contains a single integer t(1 <= t <= 10), the number of test cases followed. For each case, the first line contains three integers n, p, q(2 <= n <= 250, 1 <= p, q < n*n). The second line contains p+1 different integers in the range [1..n*n], the sequence of the Prince. The third line contains q+1 different integers in the range [1..n*n], the sequence of the Princess.
Output
For each test case, print the case number and the length of longest route. Look at the output for sample input for details.
Sample Input
1
3 6 7
1 7 5 4 8 3 9
1 4 3 5 6 2 8 9
Output for Sample Input
Case 1: 4
Problemsetter: Man Rujia Liu Man, Member of Elite Problemsetters' PanelPictures drawn by Shahriar Manzoor, Member of Elite Problemsetters' Panel
题目大概:
求一个最长公共子序列。
思路:
用n*logn的最长上升子序列,来求解最长公共子序列。
即,先扫一遍第一个序列,用map记录一下。
然后扫一遍第二个序列,把与第一个序列重复的元素的位置,放入a数组。
最后对a数组求一个最长上升子序列。得出的结果就是两个序列的最长公共子序列。
这个方法的每个序列必须没有重复元素。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
const int maxn=70000;
int dp[maxn],a[maxn];
int Lis(int n)
{
int len=1,i,low,high,mid;
dp[1]=a[1];
for(i=2;i<=n;i++)
{
low=1;
high=len;
while(low<=high)
{
mid=(low+high)/2;
if(a[i]>dp[mid])
low=mid+1;
else
high=mid-1;
}
dp[low]=a[i];
if(low>len)
len=low;
}
return len;
}
map<int,int>G;
int main()
{
int t;
int ans1=0;
scanf("%d",&t);
while(t--)
{
int n,p,q;
ans1++;
memset(dp,0,sizeof(dp));
G.clear();
scanf("%d%d%d",&n,&p,&q);
int u;
for(int i=1;i<=p+1;i++)
{
scanf("%d",&u);
G[u]=i;
}
int ans=0;
int v;
for(int j=1;j<=q+1;j++)
{
scanf("%d",&v);
//cout<<v<<" "<<G[v]<<endl;
if(G[v])
{
a[++ans]=G[v];
//cout<<v<<endl;
}
}
/*
for(int i=1;i<=ans;i++)
{
printf("%d \n",a[i]);
}
*/
//cout<<ans<<endl;
printf("Case %d: %d\n",ans1,Lis(ans));
}
return 0;
}