数论模板

筛素数

void init()     //nlogn
{
    memset(su,0,sizeof(su));
    su[1]=1;
    for(int i=2;i<=n;i++)
    for(int j=i*2;j<=n;j+=i)
    su[j]=1;
}
void init1()    //优化
{
    memset(su,0,sizeof(su));
    ll m=sqrt(n);
    su[1]=1;
    for(ll i=2;i<=m;i++)if(!su[i])
    for(ll j=i*i;j<=n;j+=i)
    su[j]=1;
}

 

gcd

long long gcd(long long m, long long n)
{
    while(m>0)
    {
        long long c = n % m;
        n = m;
        m = c;
    }
    return n;
}

扩展欧几里德算法

g 为 gcd。ax + by = gcd (a,b);

void gcd(int a,int b,int &g,int &x,int &y)
{
    if(!b)
    {
        g=a;
        x=1;
        y=0;
    }
    else
    {
        gcd(b,a%b,g,y,x);
        y-=x*(a/b);
    }
}

快速幂

long long pow_mod(long long a,long long b,long long m)
{
    a=a%m;
    long long ans=1;
    while(b)
    {
        if(b&1)
        {
            ans=(ans*a)%m;
            b--;
        }
        b>>=1;
        a=a*a%m;
    }
    return ans;
}

卢卡斯求组合数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
 
ll mod_pow(ll x, ll n, ll p){
    ll res = 1;
    while(n){
        if(n & 1) res =res * x % p;
        x = x * x % p;
        n >>= 1;
    }
    return res;
}
 
ll comb(ll n, ll m, ll p){
    if(m > n) return 0;
    ll ret = 1;
    m = min(n - m, m);
    for(int i = 1; i <= m; i ++){
        ll a = (n + i - m) % p;
        ll b = i % p;
        ret = ret * (a * mod_pow(b, p - 2, p) % p) % p;
    }
    return ret;
}
 
ll Lucas(ll n, ll m, ll p){
    if(m == 0) return 1;
    return comb(n % p, m % p, p) * Lucas(n / p, m / p, p) % p;
}
 
int main(){
    int T;
    ll n, m, p;
    scanf("%d", &T);
    while(T--){
        scanf("%I64d%I64d%I64d", &n, &m, &p);
        printf("%I64d\n", Lucas(n, m, p));
    }
    return 0;
}

小范围组合数

void init()
{
    C[0]=1;
    for(int i=1;i<=n;i++)C[i]=C[i-1]*(n-i+1)/i;
}

void init1()
{
    memset(C,0,sizeof(C));
    for(int i=0;i<=n;i++)
    {
        C[i][0]=1;
        for(int j=1;j<=i;j++)
        C[i][j]=C[i-1][j-1]+C[i-1][j];
    }
}

线性预处理组合数

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn =1e5+5;
const int mod = 1e9+7;
LL fac[maxn],inv[maxn];
LL rev2;
LL qpow(LL b,int n)
{
    LL res=1;
    while(n)
    {
        if(n&1) res=res*b%mod;
        b = b*b%mod;
        n>>=1;
    }
    return res;
}
void pre()
{
    rev2=qpow(2,mod-2);
    fac[0]=fac[1]=1;
    for(int i=2;i<maxn;++i) fac[i]=i*fac[i-1]%mod;
    inv[maxn-1]=qpow(fac[maxn-1],mod-2);
    for(int i=maxn-2;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
LL C(int n,int k)
{
    return fac[n]*inv[k]%mod *inv[n-k]%mod;
}
int main()
{
    pre();
    cout<<C(5,2);
}

费马小定理求逆元

 

mod为素数时

(sum/a)%mod---> (sum*pow_mod(a,mod-2,mod))%mod

 

欧拉降幂模板,当幂不断变化,需要取模时。

const int mod=1e9+7;
map<ll,ll>phi;
ll eular(ll n) { //log(n)时间内求一个数的欧拉值
	ll ans = n;
	for (ll i = 2; i*i <= n; i++) {
		if (n%i == 0)
		{
			ans -= ans / i;
			while (n%i == 0) n /= i;
		}
	}
	if (n > 1) ans -= ans / n;
	return ans;
}
void fun() { //预处理出mod=1e9+7的所有phi,eg:phi(mod),phi(phi(mod))...
	ll x = mod;
	while (x!=1) {
		phi[x] = eular(x);
		x = phi[x];
	}
	phi[1] = 1;
}

 

多个欧拉函数值

const int N = 1e6+10 ;
int phi[N], prime[N];
int tot;//tot计数,表示prime[N]中有多少质数 
void Euler(){
    phi[1] = 1;
    for(int i = 2; i < N; i ++){
        if(!phi[i]){
            phi[i] = i-1;
            prime[tot ++] = i;
        }
        for(int j = 0; j < tot && 1ll*i*prime[j] < N; j ++){
            if(i % prime[j]) phi[i * prime[j]] = phi[i] * (prime[j]-1);
            else{
                phi[i * prime[j] ] = phi[i] * prime[j];
                break;
            }
        }
    }
}

 

单个欧拉函数值

int oula(int n)
{
    int rea=n;
    for(int i=2; i*i<=n; i++)
        if(n%i==0)//第一次找到的必为素因子
        {
            rea=rea-rea/i;
            do
                n/=i;//把该素因子全部约掉
            while(n%i==0);
        }
    if(n>1)
        rea=rea-rea/n;
    return rea;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值