[模板] 数论

gcd

int gcd(int a,int b){ 
return !b?a:gcd(b,a%b);}

扩欧

用来求ax+by=gcd(a,b)的整数解
对方程ax+by+c=0,一组整数解为(x0,y0),则它的任意整数解可以写成(x0+kb’,y0-ka’),其中a=a/gcd(a, b),b=b/gcd(a, b),k为任意常整数

void exgcd(int a,int b,int &d,int &x,int &y)//d为gcd(a,b)
{
    if (!b) {d=a;x=1;y=0;}//边界,b=0,转化为ax=gcd(a,0)=a,此时x=1,y=0
    else {exgcd(b,a%b,d,y,x);y-=(a/b)*x;}//这行直接背吧
}

改进的Eratosthenes筛法
从2开始,找到第一个没有被筛的数x,把它标记为素数,然后把它的x倍、x+1倍……筛掉。

素数定理,即在不超过x的正整数内,素数的个数约为x/lnx个

for(int i=2;i<=sqrt(n);i++)
{
    if(!vis[i])
        for(int j=i*i;j<=n;j+=i)
        vis[j]=1;
}

!vis[i]表示i为质数

快速幂

#define LL long long
LL fast_pow(LL a,LL p)
{
    LL ans=1;a%=ha;//%一下a,防止第一次a*a直接爆long long
    for(;p;p>>=1,a=(a*a)%ha)
    if(p&1) ans=(ans*a)%ha;//加括号比较安心
    return ans;
}
int main()
{
    cin>>a>>b>>ha;
    fast_pow(a,b);//为了防止WA,最好把所有可能溢出的值全部%1return 0;
}

快速乘

#define LL long long
LL fast_pow(LL a,LL p)
{
    LL ans=0;a%=ha;//先%一下a,初值是0
    for(;p;p>>=1,a=(a+a)%ha)
    if(p&1) ans=(ans+a)%ha;//加括号比较安心……
    return ans;
}
int main()
{
    cin>>a>>b>>ha;
    fast_pow(a,b);
    return 0;
}

高精度

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int M=1005;
string a,b;
int c[M],d[M],f[M];
void get_n(string s,int *x){
    int len=s.size();
    for(int i=0;i<len;i++) 
    x[len-i]=s[i]-'0';
}
string add(string a,string b,int len)//只限非负整数相加 
{
    string ans;
    get_n(a,c);get_n(b,d);
    for(int i=1;i<=len;i++) 
    c[i]+=d[i],c[i+1]+=c[i]/10,c[i]%=10;
    if(c[len+1]) len++;//处理进位,所以是len+1 
    for(int i=len;i>=1;i--) ans+=c[i]+'0';
    return ans;
}
string sub(string a,string b,int len)//只限大的非负整数减小的非负整数
{
    string ans;
    get_n(a,c);get_n(b,d);
    for(int i=1;i<=len;i++){
        c[i]-=d[i];
        if(c[i]<0) c[i]+=10,c[i+1]--;
    }
    while(!c[len]&&len>1) len--;//去除前导0 
    for(int i=len;i>=1;i--) ans+=c[i]+'0';
    return ans;
}
string mul(string a,string b,int la,int lb)//高精度乘法,a,b均为非负整数
{
    string ans;int len=la+lb;
    get_n(a,c);get_n(b,d);
    for(int i=1;i<=la;i++)
        for(int j=1;j<=lb;j++)
            f[i+j-1]+=c[i]*d[j];
    for(int i=1;i<=len;i++)
        f[i+1]+=f[i]/10,f[i]%=10;//处理进位 
    while(!f[len]&&len>1) len--;
    for(int i=len;i>=1;i--) ans+=f[i]+'0';
    return ans;
}
string div(string a,int b,int la)//高精度a除以单精度b
{
    string ans;int x=0;
    get_n(a,c);
    for(int i=la;i>=1;i--){//倒序循环
        f[i]=(x*10+c[i])/b;
        x=(x*10+c[i])%b;
    }
    while(!f[la]&&la>1) la--;
    for(int i=la;i>=1;i--) ans+=f[i]+'0';
    return ans;
}
int main()
{
    cin>>a>>b;
    int len=max(a.size(),b.size());
    cout<<add(a,b,len)<<endl;
    cout<<sub(a,b,len)<<endl;
    cout<<mul(a,b,a.size(),b.size())<<endl;
    cout<<div(a,20,a.size())<<endl;
    return 0;
}

RMQ

void min_rmq()//最大值把min改成max
{
    for(int i=1;i<=n;i++)
    Fmin[i][0]=a[i];
    for(int j=1;j<=20;j++)
    for(int i=1;i+pow2(j)-1<=n;i++)
    Fmin[i][j]=min(Fmin[i][j-1],Fmin[i+pow2(j-1)][j-1]);    
}
int min_query(int i,int j){
    int k=log(j-i+1)/log(2);
    return min(Fmin[i][k],Fmin[j-pow2(k)+1][k]);  
}

同余

(a + b) % n = ((a % n) + (b % n)) % n
(a – b) % n = ((a % n) – (b % n) + n) % n
ab % n = (a % n)(b % n) % n
(a^b) % p = ((a % p)^b) % p

一个数的质因数最多有logn个,且分解唯一
可以用一个数的质因数分解来存一个整数
质因数分解来存一个整数处理乘除法是对应质数的指数相加减就可以,非常方便
但是在加减法时很不适用
质因数分解求 gcd 或 lcm :对应质数的指数取 min 或取 max 即可

void fz(int x)
{
    for(int i=2;i*i<=x;i++)
        if(x%i==0)
        {
            ds[++z]=i;
            while(x%i==0) x/=i,zs[z]++
        }
    if(x>1)
    {
        ds[++z]=x;
        zx[x]=1;
    }
}

四舍五入

浮点数
ceil上取整
floor/转成int下取整
四舍五入可以+0.5下取整
printf是四舍五入

组合数

//求1~n行的组合数,即杨辉三角表,注意,为了防止数组越界,此时C(0,0)为数组第一行,且第n行代表C(n-1,k)  
void make_b()
{
    C[1][1]=1,C[2][1]=1,C[2][2]=1;
    for(int i=3;i<=n;i++)
        for(int j=1;j<=i;j++)
            C[i][j]=C[i-1][j-1]+C[i-1][j];
}
//求第n行的组合数,和杨辉三角的区别是这个只求一行但是为O(n)的时间复杂度  
//注意,这个函数出于求解方便,第n行代表的是C(n,k)且是从0开始存,与上一个函数不同  
void Make_up_num(int n)  
{  
    A[0] = 1;  
    for(int i = 1;i <= n;i++)  
        A[i] = A[i-1] * (n - i + 1) / i;  
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值