描述
给定 n, k,求一个最大的整数 m,使得 km 是 n! 的约数
输入
第一行两个正整数 n, k
2 ≤ n,k ≤ 109
输出
输出最大的 m
样例输入
5 2
样例输出
3
思路:
先分解质因数,然后,求出n!中的这些素因数分别由多少,相除后,随处整体有多少,取最小值就好了。
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e5+10;
const int INF=0x3f3f3f3f;
struct poin
{
ll w,k;
ll sum;
} l[maxn];
int vis[maxn];
int c=0;
void go(ll p)
{
for (int i = 2; i*i <= p; i++)
{
while (p%i == 0)
{
if(!vis[i])vis[i]=c,l[c].w= i,l[c++].k=1;
else
{
l[vis[i]].k++;
}
p /= i;
}
}
if(p!=0&&p!=1)
{
if(!vis[p])vis[p]=c,l[c].w=p,l[c++].k=1;
else
{
l[vis[p]].k++;
}
}
}
int main()
{
ll n,k;
scanf("%lld%lld",&n,&k);
c=1;
go(k);
for(int i=1; i<c; i++)
{
int ans=0;
ll ww=l[i].w;
while(1)
{
if(n/ww)
{
ans+=n/ww;
}
else break;
ww=ww*l[i].w;
}
l[i].sum=ans;
}
ll min_1=INF;
for(int i=1; i<c; i++)
{
min_1=min(l[i].sum/l[i].k,min_1);
}
printf("%lld\n",min_1);
return 0;
}